

Artificial Intelligence for
 Natural Language Processing

Artificial Intelligence for Natural Language Processing offers a compre‑
hensive exploration of how advanced computational methods are
transforming the way machines understand human language. This
book delves into the core principles of Natural Language Processing
through an engaging progression – from fundamental word‑level
analysis to complex discourse and pragmatic analysis – integrating
linguistic theory with cutting‑edge Artificial Intelligence methodolo‑
gies. It provides a robust framework for both the theoretical under‑
pinnings and practical applications of NLP, ensuring that readers
gain a clear understanding of how computers can effectively process
and interpret human language.

What sets this book apart is its methodical structure that guides
the reader through each level of language analysis, building upon
earlier chapters to culminate in a deep integration of artificial intel‑
ligence within NLP systems. The detailed explanations and examples
are designed to bridge the gap between abstract theory and real‑world
application, making it an invaluable resource for anyone looking to
grasp the nuances of language processing.

FEATURES

• Provides a step‑by‑step progression from word‑level analysis
to syntactic, semantic, and pragmatic processing

• Offers in‑depth discussions on word sense disambiguation
with illustrative examples

• Presents an exploration of discourse integration and contex‑
tual meaning essential for modern NLP models

• Delivers comprehensive coverage of AI applications in NLP,
highlighting state‑of‑the‑art computational techniques

• Suggests clear, accessible explanations suitable for both begin‑
ners and advanced practitioners

This book is ideal for graduate students, researchers, and professionals
in computer science, linguistics, and artificial intelligence. Whether
you are a seasoned researcher looking to deepen your understanding or
a newcomer eager to explore the field, Artificial Intelligence for Natural
Language Processing serves as both an essential academic resource and
a practical guide for navigating the evolving landscape of language
technology.

Artificial Intelligence
for Natural Language

 Processing

Dhanalekshmi Prasad Yedurkar,
Ganesh R. Pathak, Manisha Galphade,

and Thompson Stephan

Designed cover image: Shutterstock Image ID 2531574919

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Dhanalekshmi Prasad Yedurkar, Ganesh R. Pathak, Manisha Galphade and Thompson
Stephan

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978‑750‑8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 978‑1‑032‑54530‑1 (hbk)
ISBN: 978‑1‑032‑54532‑5 (pbk)
ISBN: 978‑1‑003‑42532‑8 (ebk)

DOI: 10.1201/9781003425328

Typeset in Caslon
by codeMantra

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003425328
https://www.copyright.com

v

Contents

Preface viii
authors x

chaPter 1 IntroductIon and Word‑LeveL anaLysIs 1
1.1 History of NLP 1
1.2 Generic NLP System 2
1.3 Ambiguity and Challenges 2
1.4 Words 3
1.5 Corpora 4
1.6 Phases of NLP 5

1.6.1 Morphological/Lexical Analysis 5
1.6.2 Syntax Analysis or Parsing 6
1.6.3 Semantic Analysis 6
1.6.4 Discourse Integration 7
1.6.5 Pragmatic Analysis 8

1.7 Basic Concepts of Text Preprocessing 8
1.7.1 Stemming 9
1.7.2 Lemmatization 11
1.7.3 Normalization 13
1.7.4 Tokenization 14
1.7.5 Bag of Words 15
1.7.6 Regular Expression 17
1.7.7 Finite‑State Automaton 18
1.7.8 Finite‑State Transducer (FST) 20
1.7.9 N‑Gram Language Model 22

1.8 Summary 25
References 25

vi Contents

chaPter 2 syntactIc anaLysIs 27
2.1 Parts of Speech Tagging 27

2.1.1 Rule‑Based Tagging 29
2.1.2 Stochastic POS Tagging 29

2.2 Stop Words 31
2.3 Sequence Labeling 31

2.3.1 Hidden Markov Model 32
2.3.2 The Conditional Random Field 33

2.4 Context‑Free Grammar (CFG) 36
2.5 Parsing 37

2.5.1 Types of Parsing 37
2.5.2 Earley Parsing 38
2.5.3 Cocke‑Kasami‑Younger Parsing 40

2.6 Probabilistic Context‑Free Grammar 41
2.7 Term Frequency and Inverse Document Frequency 43
2.8 Information Extraction 45
2.9 Relation Extraction 46
2.10 Summary 47
References 48

chaPter 3 semantIc anaLysIs 49
3.1 Semantic Grammar 49
3.2 Lexical Semantics 50
3.3 Lexemes 51
3.4 Word Senses 51

3.4.1 Hyponymy 52
3.4.2 Homonymy 52
3.4.3 Polysemy 53
3.4.4 Synonymy 54
3.4.5 Antonymy 54

3.5 Wordnet 55
3.6 Word Similarity 56
3.7 Word Sense Disambiguation 58

3.7.1 Dictionary Based Approach of WSD 59
3.8 Information Retrieval 61
3.9 Summary 63
References 63

chaPter 4 dIscourse and PragmatIc anaLysIs 65
4.1 Important Terms 65
4.2 Ethnography of Speaking 68
4.3 Implicature 69
4.4 Cooperative Principle 69
4.5 Schema‑Script 72
4.6 Conversational Analysis 75
4.7 Deciphering Meaning and Coherence of Text Data 77

viiContents

4.7.1 Endophora 78
4.7.2 Exophora 78

4.8 Discourse Context and Its Types 80
4.9 Speech Acts 83

4.9.1 Direct Speech Act 83
4.9.2 Indirect Speech Act 83

4.10 Deixis and Deictic Expressions 85
4.11 Positive and Negative Face in Pragmatics 88

4.11.1 Positive Face 89
4.11.2 Negative Face 89

4.12 Pragmatic Markers and Functions 93
4.12.1 Functions of Pragmatic Markers 93

4.13 Summary 97
References 97

chaPter 5 artIfIcIaL InteLLIgence In nLP 99
5.1 Machine Learning 99

5.1.1 Supervised Machine Learning 99
5.1.2 Unsupervised Machine Learning 100

5.2 Machine Learning on Natural Language Sentences 100
5.3 Hybrid Machine Learning Systems in NLP 102
5.4 Introduction to Deep Learning in NLP 106
5.5 Applications of NLP 110

5.5.1 Sentiment Analysis 110
5.5.2 Prediction of Next Word 112

5.6 Summary 114
References 115

Index 117

viii

Preface

When we first began exploring the world of Natural Language
Processing, we were struck by how effortlessly human beings
 communicate – sharing nuanced meanings, emotions, and ideas
through language. This book is a product of our longstanding fas‑
cination with the intricate processes behind human communication
and the challenge of replicating that understanding in machines.
We wanted to create a resource that not only breaks down the tech‑
nical components of NLP but also paints a broader picture of how
these components interact within a framework driven by artificial
intelligence.

At its core, this book is about connecting the dots between lan‑
guage, meaning, and technology. We have always believed that the
key to advancing NLP lies in understanding both its linguistic roots
and its computational applications. Throughout the chapters, we dis‑
cuss everything from basic word‑level analysis to more advanced top‑
ics like syntactic parsing, semantic disambiguation, and pragmatic
analysis. Our aim is to guide you through the progressive layers of
NLP, revealing how each level builds upon the previous one and how
artificial intelligence ties it all together.

ixPrefaCe

Our motivation for writing this book was twofold. First, we wanted
to demystify the subject for students, researchers, and professionals
who are keen to dive deeper into the field but may find existing lit‑
erature either too theoretical or overly technical. Second, we wanted
to share insights gleaned from both academic research and practical
applications, offering a balanced perspective that encourages readers
to see the relevance of NLP in solving real‑world problems. In writing
this book, we hope to inspire a deeper appreciation for the complexi‑
ties of language and the innovative methods used to decode it.

We invite you to explore these pages with curiosity and an open
mind, as we journey together into the heart of language processing
and artificial intelligence. Whether you are embarking on your first
exploration of NLP or seeking to refine your understanding of its
advanced applications, this book is meant to be a practical, engaging,
and thought‑provoking guide.

x

Authors

Dhanalekshmi Prasad Yedurkar is a Postdoctoral
Researcher at the University of Augsburg, Germany.
She is also affiliated to MIT Art, Design and
Technology University, Pune, India, as an Associate
Professor in the School of Computing. She earned a
PhD on the application of digital signal processing
and artificial intelligence in anomaly detection of
EEG signal. Her current research interests include

natural language processing, tool condition monitoring for CNC pro‑
cesses, diagnosis and prognosis of gear monitoring, biomedical signal
processing, machine learning, Internet of Things, and image processing.

Ganesh R. Pathak is an Academic and a
Research er with over 26 years of experience
bridging academia and industry. He is currently
a Professor and Head of the Department of
Computer Science and Engineering at the School
of Computing, MIT Art, Design and Technology
University, Pune.

xiauthors

He earned a PhD in computer science and engineering with his
research focused on developing a security framework for wireless
sensor networks. He has published 34 research papers in reputed
peer‑reviewed journals and conference proceedings, many of which
are indexed in Scopus and SCI. His research and teaching interests
focus on artificial intelligence, big data analytics, and cognitive mod‑
elling. As a mentor, he guides doctoral candidates in artificial intel‑
ligence, data science, cloud computing, and security.

Beyond his research, he is an active contributor to the academic and
professional community. He serves on various boards of studies, and
he contributes as a reviewer and session chair at national and interna‑
tional conferences. Dr. Pathak also promotes automation and
e‑ governance in educational processes within the university. His efforts
extend to skill development through numerous organized workshops,
seminars, and faculty development programs, which strengthen his
role as an admonitor in academia.

Through his scholarly achievements, project leadership, and engage‑
ment in the academic community, Dr. Pathak continues to make
contributions to the university and various institutions in advancing
technology education and research.

Manisha Galphade is an experienced Academic
Professional currently working at the School of
Computing, MIT Art, Design and Technology
University, Pune. With a teaching career span‑
ning 16 years, she has contributed significantly
to the field of education. She teaches subjects
including machine learning, database manage‑

ment system, theory of computation, data mining, and many more.
Throughout her career, she has authored four conference papers, five
journal papers, and three book chapters, showcasing her dedication
to research and academic development. She is also pursuing a PhD
at Veermata Jijabai Technological Institute, Mumbai, furthering her
academic expertise. Her research area is artificial intelligence with
research interests in time series analysis, image processing, and sig‑
nal processing. Passionate about fostering innovation and critical

xii authors

thinking, she strives to inspire students to reach their full potential.
Her extensive experience and research contributions reflect her com‑
mitment to advancing knowledge and fostering growth in her field.

Thompson Stephan earned a PhD at
Pondicherry University, India, in 2018, and he
has nearly 7 years of academic experience, com‑
plemented by full‑time research and industry
expertise. He serves as an Assistant Professor at
the Thumbay College of Management and AI in
Healthcare, Gulf Medical University, Ajman,
United Arab Emirates. Recognized among

Stanford/Elsevier’s Top 2% Scientists globally in both 2023 and
2024, Dr. Thompson has received prestigious accolades, including
the Best Researcher Award in 2020 and the Protsahan Research
Award in 2023, both from the IEEE Bangalore Section, India.
His primary research focus is artificial intelligence with specialized
expertise in advancing machine learning, data mining, and meta‑
heuristic optimization. With more than 80 Scopus‑indexed pub‑
lications, including 48 in SCI‑indexed journals, Thompson’s work
has garnered significant recognition. He actively contributes as a
book editor and reviewer for esteemed international journals, with
publications on leading platforms such as IEEE, Elsevier, Taylor &
Francis, and Springer.

DOI: 10.1201/9781003425328-1 1

1
IntroductIon and

Word‑LeveL anaLysIs

Natural Language Processing (NLP) is a domain within Computer
Science and Engineering, particularly in Artificial Intelligence (AI),
focused on a computer’s capacity to comprehend, interpret, analyze,
and alter any human language. It emphasizes the communication
between computers and humans through natural language. It is a
part of AI dedicated to interpreting human language in both writ‑
ten and spoken forms. NLP allows computers to comprehend, inter‑
pret, and produce human language that is contextually significant and
meaningful.

1.1 History of NLP

• Machine Translation Phase (1940–1960): Early attempts at
automated language translation, with rule‑based systems and
limited linguistic understanding [1].

• AI Influenced Phase (1960s–1970): Shift towards AI, incor‑
porating symbolic reasoning and knowledge representation
into language processing.

• Grammatico‑logical Phase (1970–late 1980): Development
of rule‑based systems that focused on syntactic and semantic
parsing for more in‑depth language understanding.

• Lexical & Corpus Phase (1990): Greater reliance on statisti‑
cal methods, corpus linguistics, and lexical resources for lan‑
guage processing.

https://doi.org/10.1201/9781003425328-1

2 AI FOR NATURAL LANGUAGE PROCESSING

1.2 Generic NLP System

Generic NLP system includes various components and processes:

• Input: The system takes in input data in the form of text,
speech, or a combination of both.

• Natural Language Understanding (NLU): The NLU com‑
ponent analyzes the input to extract meaning, intent, and
context.

Tasks include parsing sentences, identifying entities (such
as people, places, and things), determining sentiment, and
understanding the relationships between words and phrases.

• Processing and Inference: The system processes the extracted
information, often using machine learning algorithms or
rule‑based systems, to make inferences and derive insights.

• Natural Language Generation (NLG): NLG is the pro‑
cess of producing meaningful and coherent language output.
It involves generating human‑like text or speech based on
the understanding derived from NLU or other sources. This
encompasses tasks such as creating summaries, generating
responses, language translation, and constructing coherent
paragraphs or articles.

• Output: The final output is generated text, speech, or action‑
able information, depending on the application

1.3 Ambiguity and Challenges

Ambiguity is the primary challenge in NLP, as words possess distinct
meanings that vary according to context, resulting in ambiguity at
lexical, syntactic, and semantic levels. Natural language is inherently
ambiguous, as it can be understood in multiple ways [2].

NLP has various types of ambiguities:

• Lexical: Ambiguity due to multiple meanings of a single
word.

• Syntactic: Ambiguity arising from multiple possible inter‑
pretations of the grammatical structure of a sentence.

• Semantic: Ambiguity from words or phrases having multiple
meanings based on context.

3INTRODUCTION AND WORD-LEVEL ANALYSIS

• Pragmatic: Ambiguity arising from multiple interpretations
of a context of a phrase.

• Anaphoric: Ambiguity occurring when a pronoun or expres‑
sion refers to more than one possible antecedent.

• Structural Ambiguity: Ambiguity in the overall structure or
organization of a sentence, leading to different interpretations.

1.4 Words

In NLP, the concept of “words” plays a central role, but it encom‑
passes various meanings depending on the context. At its core, a word
is often treated as a token, which is the smallest unit of text that car‑
ries meaning. For instance, in the sentence “NLP is fascinating!,” the
words are tokenized into [“NLP,” “is,” “fascinating,” “!”]. Words can
be classified into different types based on their role in text. Content
words such as nouns, verbs, and adjectives carry semantic meaning,
while function words like prepositions and conjunctions primarily
serve grammatical purposes. Preprocessing often involves removing
stopwords, which are common but less meaningful words like “and,”
“the,” or “is.”

Words in NLP are not just textual entities but are also represented
mathematically. Word embeddings, including GloVe and Word2Vec,
are numerical vector representations that include semantic and syn‑
tactic links among words. Additionally, techniques like Byte Pair
Encoding (BPE) or SentencePiece break words into smaller units
or subword tokens, enabling models to handle complex words and
inflected forms effectively. However, working with words presents
challenges such as ambiguity (e.g., the word “bank” can mean side of
a river or a financial institution), handling out‑of‑vocabulary (OOV)
words not seen during training, and managing morphological varia‑
tions like “run,” “running,” or “runs.”

NLP tasks such as part‑of‑speech tagging assign grammatical
categories to words, while named entity recognition identifies spe‑
cific entities like names, dates, or locations. Advanced techniques
such as word sense disambiguation aim to determine the correct
meaning of a word based on its context. Despite being fundamen‑
tal, words pose numerous challenges, especially in languages with

4 AI FOR NATURAL LANGUAGE PROCESSING

complex structures, requiring sophisticated methods to ensure
accurate representation and understanding in NLP applications.

1.5 Corpora

In NLP, a corpus (plural: corpora) refers to a large and structured
collection of texts that serve as a foundation for linguistic analysis and
model training. These corpora are essential resources, providing raw
material for various NLP tasks, from language modeling to machine
translation and sentiment analysis. A corpus can be as simple as a col‑
lection of plain text documents or as complex as annotated datasets
enriched with additional metadata, such as POS tags, syntactic struc‑
tures, or semantic roles.

Corpora are often categorized based on their content and pur‑
pose. General‑purpose corpora, such as the British National Corpus
(BNC) or Wikipedia, contain diverse and broad text types, making
them suitable for generic language tasks. Domain‑specific corpora,
on the other hand, focus on specialized fields like legal, medical, or sci‑
entific texts, supporting tasks that require domain expertise. Another
classification is based on annotations. Raw corpora are unprocessed
text collections, while annotated corpora include labels or tags for
tasks such as sentiment analysis, NER, or syntactic parsing. Popular
annotated corpora include the Penn Treebank for syntactic parsing
and the CoNLL datasets for NER.

Some corpora are multilingual, supporting tasks like machine
translation or cross‑lingual language modeling. Examples include the
Europarl corpus, which contains parliamentary proceedings in mul‑
tiple European languages, and the UN Parallel Corpus, which offers
translated United Nations documents. Additionally, corpora can be
dynamic and ever‑expanding, such as social media datasets like the
Twitter corpus, reflecting real‑time trends and conversational lan‑
guage. However, building and using corpora come with challenges,
including data privacy, ethical concerns, and ensuring representative‑
ness across languages and demographics. Despite these challenges,
corpora remain indispensable in NLP, driving advancements in lan‑
guage understanding, generation, and analysis.

5INTRODUCTION AND WORD-LEVEL ANALYSIS

1.6 Phases of NLP

NLP is divided into five principal stages [3], commencing with basic
word processing and advancing to the interpretation of complex
phrase meanings, as illustrated in Figure 1.1.

 1. Lexical/Morphological Analysis
 2. Syntax Analysis or Parsing
 3. Semantic Analysis
 4. Pragmatic Analysis
 5. Discourse Integration

1.6.1 Morphological/Lexical Analysis

This is the preliminary phase in NLP, concentrating on identifying
and analyzing word structures. The aggregate of words and phrases
in a language is termed the lexicon. Lexical analysis is the proce‑
dure of decomposing a text file into paragraphs, phrases, and words,
transforming source code into comprehensible lexemes. This process
searches for morphemes, the smallest units of a word, and identi‑
fies their relationships, transforming the word into its root form and
assigning probable parts of speech (POS). Two basic types of mor‑
phological composition are as follows.

• Inflectional Morphology: It generates many variants of the
same word, conveying certain grammatical information with‑
out altering the fundamental meaning. It adds information to
a word consistent with its context within a sentence

E.g. automaton → automata

Figure 1.1 Phases of NLP.

6 AI FOR NATURAL LANGUAGE PROCESSING

• Derivational Morphology: It generates various words from
the same root, including distinct meanings, grammatical cat‑
egories, and frequently introducing new parts of speech.

E.g. parse → parser

1.6.2 Syntax Analysis or Parsing

The syntax analysis or parsing phase in NLP focuses on analyz‑
ing the grammatical structure of a given sentence to determine how
words are arranged and related according to the rules of a language.
This phase ensures that the input text adheres to the syntax of the
language being processed. The primary goal of parsing is to construct
a parse tree or syntax tree, which represents the hierarchical struc‑
ture of the sentence, showing the relationships between words and
phrases. For instance, in the sentence “The cat sat on the mat,” parsing
identifies components such as the noun phrase (“The cat”) and the verb
phrase (“sat on the mat”) and their roles in the sentence.

Parsing can be performed using various techniques, such as
dependency parsing, which focuses on relationships between words,
and constituency parsing, which breaks sentences into nested
sub‑phrases based on grammatical rules. Syntax analysis is crucial
for higher‑level NLP tasks like semantic analysis, where meaning is
derived from syntactic structures. It also helps in identifying errors in
the text, such as grammatical mistakes, and is a foundational step for
applications like machine translation, question answering, and text
generation. Despite its importance, syntax analysis faces challenges,
especially with ambiguous sentences where multiple valid parse trees
can exist, requiring sophisticated algorithms to resolve such ambigui‑
ties accurately.

1.6.3 Semantic Analysis

Semantic analysis in NLP is the phase where the focus shifts from
the structure of a sentence to its meaning. It aims to understand the lit‑
eral meaning of words, phrases, and sentences within a given context,
ensuring that the text’s interpretation aligns with its intended sense.
This phase involves tasks such as resolving word meanings (lexical

7INTRODUCTION AND WORD-LEVEL ANALYSIS

semantics), analyzing the relationships between words (semantic
roles), and constructing a logical representation of the text. For exam‑
ple, in the sentence “John gave Mary a book,” semantic analysis identi‑
fies the entities (John, Mary, and book), their roles (giver, receiver, and
object), and the action (gave).

A critical aspect of semantic analysis is word sense disambigua‑
tion, which resolves ambiguities by determining the correct meaning
of a word based on its context. Another important task is identifying
semantic relationships, such as synonyms, antonyms, and hierarchical
relations (e.g., a dog is a type of animal). Semantic analysis frequently
employs methodologies such as semantic networks, ontologies, or
pre‑trained language models to construct a coherent representation of
the text. It plays a vital role in applications such as question‑answering
systems, machine translation, and information retrieval, where under‑
standing meaning is crucial. However, challenges arise from figurative
language, idioms, and context‑dependent nuances, making semantic
analysis one of the most complex and significant phases of NLP.

1.6.4 Discourse Integration

Discourse integration is a critical phase in NLP that goes beyond
understanding individual sentences to analyze the relationships and
coherence between sentences in a larger context, such as paragraphs or
entire documents. It ensures that the meaning of a sentence is inter‑
preted in light of the surrounding text, recognizing that sentences do
not exist in isolation but are part of a broader discourse. For example,
in the two sentences “John bought a car. He loves it,” discourse integra‑
tion identifies that “ he” refers to John and “ it” refers to the car, estab‑
lishing semantic connections across sentences.

This phase involves tasks like coreference resolution, which iden‑
tifies entities that refer to the same object or person across sentences,
and anaphora resolution, which connects pronouns or other referring
expressions to their antecedents. Discourse integration also examines
how ideas flow logically, identifying relationships such as causality,
contrast, or elaboration. For instance, in “She studied hard because she
wanted to pass,” the causal relationship between studying and wanting
to pass is established.

8 AI FOR NATURAL LANGUAGE PROCESSING

Discourse integration is crucial for tasks like summarization, ques‑
tion answering, and dialogue systems, where understanding the over‑
all context and continuity of ideas is essential. However, this phase
can be challenging due to ambiguities, implied information, and the
variability of natural language, requiring sophisticated models to
effectively capture and utilize contextual information.

1.6.5 Pragmatic Analysis

Pragmatic analysis is the final phase of NLP that focuses on inter‑
preting the intended meaning of text or speech by considering the
context, speaker’s intentions, and situational factors. Unlike earlier
phases that deal with literal meanings or syntactic structures, prag‑
matic analysis examines the implied meaning behind words and
phrases, understanding nuances like sarcasm, humor, politeness, or
indirect requests. For instance, in the sentence “Can you pass the salt?”
the literal meaning is a question about ability, but pragmatically, it is
interpreted as a polite request to pass the salt.

This phase considers aspects such as the speaker’s intent, the rela‑
tionship between participants in a conversation, cultural norms, and
the environment in which communication takes place. Pragmatic
analysis often involves tasks like speech act recognition, where the
type of communication (e.g., request, command, or question) is iden‑
tified, and deixis resolution, which interprets words like “this,” “that,”
“ here,” and “there” based on context.

Pragmatic analysis is essential for applications like conversational
AI, sentiment analysis, and machine translation, where understand‑
ing context‑dependent meaning is critical for accurate and human‑like
responses. However, this phase is challenging due to the complexi‑
ties of human communication, such as ambiguous expressions, cul‑
tural differences, and the need to infer unstated intentions or shared
knowledge, making it one of the most sophisticated tasks in NLP.

1.7 Basic Concepts of Text Preprocessing

Text preprocessing [4] is an essential phase in NLP that prepares
unrefined text for examination and modeling. It involves transforming

9INTRODUCTION AND WORD-LEVEL ANALYSIS

unstructured text into a structured format suitable for computational
processing. Techniques such as tokenization, stemming, lemmatiza‑
tion, normalization, and Bag of Words (BoW) are used to clean and
simplify text, ensuring consistency [5]. Additionally, advanced tools
like regular expressions, finite automata, finite‑state transducers,
and n‑gram language models help extract patterns and understand
context. Effective preprocessing improves the performance of NLP
models by reducing noise, standardizing data, and capturing mean‑
ingful features from text.

1.7.1 Stemming

Stemming is transforming words into their base forms according
to specific rules, regardless of significance. It is reducing words to
their base or root form. The most common algorithm for stemming is
Porters Algorithm

For example – troubled, troubles → trouble
 article → articl
Implementation –

% Python program

from nltk.stem import PorterStemmer

def stemming_example(word):
 ps = PorterStemmer()
 stemmed_word = ps.stem(word)
 return stemmed_word

word1 = "running"
word2 = "connected"
word3 = "troubled"

result1 = stemming_example(word1)
result2 = stemming_example(word2)
result3 = stemming_example(word3)

print('Stemmed word of', word1, ':', result1)
print('Stemmed word of', word2, ':', result2)
print('Stemmed word of', word3, ':', result3)

10 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Stemmed word of running : run
Stemmed word of connected : connect
Stemmed word of troubled : troubl

% Python program

from nltk.stem import PorterStemmer
import pandas as pd

Initialize the stemmer
porter_stemmer = PorterStemmer() # Corrected the typo
in initialization

Words to stem
words = ["troubled", "running", "article",
"connecting", "lives"]

Stem the words
stemmed_words = [porter_stemmer.stem(word) for word
in words]

Create a DataFrame to show original and stemmed
words
stemdf = pd.DataFrame({'original_word': words,
'stemmed_word': stemmed_words})

Display the DataFrame
print(stemdf)

% Output:

original_word stemmed_word

0 troubled troubl
1 running run
2 article articl
3 connecting connect
4 lives live

11INTRODUCTION AND WORD-LEVEL ANALYSIS

1.7.2 Lemmatization

Lemmatization is transforming words into their base forms through
vocabulary mapping. It is similar to stemming but considers the word’s
meaning, transforms words to actual the root. It uses parts of speech
and its meaning.

But lemmatization is slower than stemming.
For example – better → good
Implementation

% Python program

from nltk.stem import WordNetLemmatizer

def lemmatization_example(word, pos='n'):
 lemmatizer = WordNetLemmatizer() # Initialize
lemmatizer
 lemmatized_word = lemmatizer.lemmatize(word,
pos=pos) # Corrected variable name
 return lemmatized_word # Return the lemmatized word

Example words
word1 = "running"
word2 = "article"
word3 = "troubled"

Get the lemmatized words
result1 = lemmatization_example(word1) # Corrected
variable assignment
result2 = lemmatization_example(word2) # Fixed the
result variable
result3 = lemmatization_example(word3) # Corrected
the result variable

Print results
print('Lemmatized word of', word1, ':', result1) #
Corrected print statement syntax
print('Lemmatized word of', word2, ':', result2)
print('Lemmatized word of', word3, ':', result3)

12 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Lemmatized word of running : running
Lemmatized word of article : article
Lemmatized word of troubled : troubled

 % Python program

from nltk.stem import WordNetLemmatizer
import pandas as pd

Initialize lemmatizer
lemmatizer = WordNetLemmatizer()

Words to lemmatize
words = ["troubled", "running", "article",
"connecting"]

Lemmatize the words (using part‑of‑speech 'v' for
verbs)
lemmatized_words = [lemmatizer.lemmatize(word,
pos='v') for word in words]

Create DataFrame to show original and lemmatized
words
lemmatizeddf = pd.DataFrame({'original_word': words,
'lemmatized_word': lemmatized_words})

Display the DataFrame
print(lemmatizeddf)

% Output:

original_word stemmed_word

0 troubled troubl
1 running run
2 article articl
3 connecting connect

13INTRODUCTION AND WORD-LEVEL ANALYSIS

1.7.3 Normalization

Text normalization is transformation of text into a standard (canoni‑
cal) form. It ensures consistency in text data. Text normalization is
beneficial for noisy texts, including blog article comments, text mes‑
sages, and social media comments, where Out‑Of‑Vocabulary (OOV)
phrases, misspellings, and abbreviations are frequent.

% Python program

import re
import pandas as pd

def normalize_text(text):
 # Convert to lowercase
 text = text.lower()

 # Replace repeated characters (e.g., gooood to good)
 text = re.sub(r'(.)\1+', r'\1', text)

 # Replace common abbreviations
 text = re.sub(r'\bgud\b', 'good', text)
 text = re.sub(r'\bgr8\b', 'great', text)

 # Remove special characters, numbers, and
punctuations
 text = re.sub(r'[^a‑zA‑Z\s]', '', text)

 # Remove extra whitespaces
 text = re.sub(r'\s+', ' ', text).strip()

 return text

Example texts
texts = ["stop‑words", "gud", "This is gr8!"]

Normalize the texts
normalized_texts = [normalize_text(text) for text in
texts]

14 AI FOR NATURAL LANGUAGE PROCESSING

Create DataFrame
df = pd.DataFrame({'Original Text': texts, 'Normalized
Text': normalized_texts})

Display the DataFrame
print(df)

% Output:

Original Text Normalized Text

0 stop‑words stopwords
1 gud good
2 This is gr8! this is great

1.7.4 Tokenization

Tokenization refers to the process of dividing text into meaningful
units, specifically words. Both phrase tokenizers and word tokeniz‑
ers exist. The sentence tokenizer segments a paragraph into coherent
sentences, whereas the word tokenizer partitions the phrase into indi‑
vidual meaningful words.

Implementation –

% Python program

from nltk.tokenize import word_tokenize, sent_tokenize

def tokenization_example(text):
 # Tokenize words
 words = word_tokenize(text)

 # Tokenize sentences
 sentences = sent_tokenize(text)

 return words, sentences

Example text to tokenize
text_to_tokenize = "This is a sample sentence.
Tokenize it."

15INTRODUCTION AND WORD-LEVEL ANALYSIS

Get word and sentence tokens
word_tokens, sentence_tokens =
tokenization_example(text_to_tokenize)

Print results
print(f"Word tokens: {word_tokens}")
print(f"Sentence tokens: {sentence_tokens}")

% Output:

Word tokens: ['This', 'is', 'a', 'sample', 'sentence',
'.', 'Tokenize', 'it', '.']
Sentence tokens: ['This is a sample sentence.',
'Tokenize it.']

1.7.5 Bag of Words

The BoW is a method employed in NLP to represent textual data as
a collection of numerical attributes. In this framework, each docu‑
ment or text segment is presented as a “bag” of words, with each word
denoted by a distinct feature or dimension in the resultant vector. The
value of each attribute is calculated by the frequency of the relevant
word’s occurrence in the text. The BoW technique is utilized for fea‑
ture extraction from textual materials.

Implementation –

% Python program

import pandas as pd
import numpy as np
import re

Sample documents
doc1 = "Natural Language Processing is fascinating!"
doc2 = "NLP applications are widespread."
doc3 = "Text analysis and machine learning are
essential in NLP."

Tokenize and normalize the words in each document
doc1_words = re.sub(r"[^a‑zA‑Z0‑9]", " ", doc1.
lower()).split()
doc2_words = re.sub(r"[^a‑zA‑Z0‑9]", " ", doc2.
lower()).split()

16 AI FOR NATURAL LANGUAGE PROCESSING

doc3_words = re.sub(r"[^a‑zA‑Z0‑9]", " ", doc3.
lower()).split()

Create a set of unique words across all documents
wordset12 = np.union1d(doc1_words, doc2_words)
wordset = np.union1d(wordset12, doc3_words)

Function to calculate Bag of Words representation
for a document
def calculateBOW(wordset, doc_words):
 tf_dict = dict.fromkeys(wordset, 0) # Initialize
dictionary with 0 for all words in wordset
 for word in doc_words:
 tf_dict[word] += 1 # Increment count for each
word in the document
 return tf_dict

Calculate Bag of Words for each document
bow1 = calculateBOW(wordset, doc1_words)
bow2 = calculateBOW(wordset, doc2_words)
bow3 = calculateBOW(wordset, doc3_words)

Create a DataFrame to represent the Bag of Words for
each document
df_bow = pd.DataFrame([bow1, bow2, bow3])

Display the DataFrame
print(df_bow.head())

% Output:

analysis and applications are essential fascinating in is language \

0 0 0 0 0 0 1 0 1 1
1 0 0 1 1 0 0 0 0 0
2 1 1 0 1 1 0 1 0 0

learning machine natural nlp processing text widespread
0 0 0 1 0 1 0 0
1 0 0 0 1 0 0
2 1 1 0 1 0 1 0

17INTRODUCTION AND WORD-LEVEL ANALYSIS

1.7.6 Regular Expression

Regular Expression (RE) [6], a language for specifying text strings,
consists of basic units such as characters or strings. It is a standard
notation for representation of text sequences.

RE helps to find or match other strings or set of strings, to define
a pattern to search through a corpus.

Regular expressions are implemented by finite‑state automaton.
An expression written using the set of operators (+, ., *) and describ‑

ing a regular language is known as regular expression.
Example : (0 + 10*) – {0, 1, 10, 100, 1000, 10000, … }
Implementation

% Python program

import re

Example 1: Matching a pattern in a string
text = "Natural Language Processing is a key aspect of
modern AI."
pattern = r'\b\w{6}\b' # Matches six‑letter words

matches = re.findall(pattern, text) # Corrected the
assignment
print(f"Matches: {matches}")

Example 2: Replacing a pattern in a string
text = "Hello, world! This is an example sentence."
pattern = r'\b\w{5}\b' # Matches five‑letter words
replacement = "***"

modified_text = re.sub(pattern, replacement, text)
print(f"\nModified Text: {modified_text}")

% Output:

Matches: ['aspect', 'modern']

Modified Text: ***, ***! This is an example sentence.

% Python program

import re

18 AI FOR NATURAL LANGUAGE PROCESSING

Example 1: Using re.match()
match_result = re.match(r'^Hello', 'Hello, World!')
print(f"Match: {match_result.group() if match_result
else 'No match'}")

Example 2: Using re.search()
search_result = re.search(r'World', 'Hello, World!')
print(f"Search: {search_result.group() if search_
result else 'Not found'}")

Example 3: Using re.findall()
words = re.findall(r'\b\w+\b', 'Hello, World!')
print(f"Find all words: {words}")

Example 4: Using re.sub()
modified_text = re.sub(r'World', 'Universe', 'Hello,
World!')
print(f"Replace: {modified_text}")

Example 5: Using re.split()
tokens = re.split(r'\s', 'This is a sample sentence.')
print(f"Split: {tokens}")

% Output:

Match: Hello
Search: World
Find all words: ['Hello', 'World']
Replace: Hello, Universe!
Split: ['This', 'is', 'a', 'sample', 'sentence.']

1.7.7 Finite‑State Automaton (FSA)

An automaton is an abstract model of a computer. Finite‑State
Automaton (FSA) [7] is a significant tool of computational linguis‑
tics. An automaton having a finite number of states is called a FSA or
Finite Automaton (FA). The set of languages that can be character‑
ized by FSAs are called regular expressions.

Mathematically, an automaton can be represented by a 5‑tuple
(Q , Σ, δ, q0, F), where −

19INTRODUCTION AND WORD-LEVEL ANALYSIS

• Σ is a finite set of symbols, called the alphabet of the
automaton.

• q0 is the initial state from where any input is processed
(q0 ∈ Q).

• Q is a finite set of states.
• δ is the transition function
• F is a set of final state/states of Q (F ⊆ Q).

Implementation

% Python program

class FiniteAutomaton:
 def __init__(self, states, alphabet, transitions,
start_state, accepting_states):
 self.states = states
 self.alphabet = alphabet
 self.transitions = transitions
 self.current_state = start_state
 self.accepting_states = accepting_states

 def process_input(self, input_string):
 for symbol in input_string:
 if symbol not in self.alphabet:
 return False # Reject if symbol is
not in the alphabet
 # Transition to next state based on
current state and input symbol
 self.current_state = self.transitions.
get((self.current_state, symbol), None)
 if self.current_state is None:
 return False # Reject if no valid
transition

 # Accept if the final state is an accepting
state
 return self.current_state in self.
accepting_states

Example: A simple DFA to recognize 'ab'
states = {'q0', 'q1'}
alphabet = {'a', 'b'}
transitions = {('q0', 'a'): 'q1', ('q1', 'b'): 'q0'}

20 AI FOR NATURAL LANGUAGE PROCESSING

start_state = 'q0'
accepting_states = {'q0'}

dfa = FiniteAutomaton(states, alphabet, transitions,
start_state, accepting_states)

input_str = 'ababab'
result = dfa.process_input(input_str)

print(f"Does the input '{input_str}' match the
pattern? ‑ {result}")

% Output:

Does the input 'ababab' match the pattern? ‑ True

1.7.8 Finite‑State Transducer

A FSA represents a set of strings, a regular language.
E.g. {walk, walks, walked, love loves, loved}
A Finite‑State Transducer (FST) represents a set of pairs of strings

(as input and output pairs)
{(walk, walk+V+PL), (walk, walk+N+SG), (walked, walk+

V+PAST)...}
FSA have input labels – one input tape
FST have input:output pairs on labels – two tapes: input and output.
Mathematically, a finite‑state transducer T = 〈Q , Σ, Δ, q0, F, δ, σ〉

consists of:

• A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,...})
• A designated start state q0 ∈ Q
• A finite set of states Q = {q0, q1,.., qn}
• A finite alphabet Δ of output symbols (e.g. Δ = {+N, +pl,...})
• A set of final states F ⊆ Q
• A transition function δ: Q × Σ → 2Q [δ(q,w) = Q’ for q ∈ Q ,

Q’ ⊆ Q , w ∈ Σ]
• An output function σ: Q × Σ → Δ* [σ(q,w) = ω for q ∈ Q , w

∈ Σ, ω ∈ Δ*]

Implementation

21INTRODUCTION AND WORD-LEVEL ANALYSIS

% Python program

class FiniteStateTransducer:
 def __init__(self, states, alphabet, transitions,
start_state, final_states):
 self.states = states
 self.alphabet = alphabet
 self.transitions = transitions
 self.current_state = start_state
 self.final_states = final_states

 def process_input(self, input_string):
 for symbol in input_string:
 if symbol not in self.alphabet:
 print(f"Invalid symbol: {symbol}")
 return False

 transition_key = (self.current_state,
symbol)
 if transition_key in self.transitions:
 self.current_state = self.
transitions[transition_key]
 else:
 print(f"No transition defined for
{transition_key}")
 return False

 return self.current_state in self.final_states

Example: A simple FST to recognize 'ab' or 'cd'
states = {'q0', 'q1'}
alphabet = {'a', 'b', 'c', 'd'}
transitions = {('q0', 'a'): 'q1', ('q1', 'b'): 'q0',
('q0', 'c'): 'q1', ('q1', 'd'): 'q0'}
start_state = 'q0'
final_states = {'q0'}

fst = FiniteStateTransducer(states, alphabet,
transitions, start_state, final_states)

22 AI FOR NATURAL LANGUAGE PROCESSING

Test the FST
input_str1 = 'abcd'
input_str2 = 'acbd'

result1 = fst.process_input(input_str1)
result2 = fst.process_input(input_str2)

Display the results
print(f"Does '{input_str1}' match the pattern?
{result1}")
print(f"Does '{input_str2}' match the pattern?
{result2}")

% Output:

No transition defined for ('q1', 'c')
Does 'abcd' match the pattern? True
Does 'acbd' match the pattern? False

1.7.9 N‑Gram Language Model

Language modeling is the way of determining the probability of any
sequence of words. Language models calculate the probabilities of a
sentence or series of words, as well as the likelihood of a subsequent
word based on a preceding set of words. N‑grams [8] are consecutive
sequences of elements derived from a text or audio corpus, or virtu‑
ally any form of data. The variable n in n‑grams denotes the quantity
of elements to evaluate: unigram for n = 1, bigram for n = 2, trigram
for n = 3, and so forth. n‑gram and n‑gram models are widely used
in probability, communication theory, computational linguistics like
statistical NLP, computational biology etc.

1.7.9.1 Steps in N‑Grams Language Model

 1. Data Preparation: Tokenize the text into words or other
meaningful units.

 2. Choose N: Determine the value of N for the desired context
(e.g., unigrams, bigrams, trigrams).

23INTRODUCTION AND WORD-LEVEL ANALYSIS

 3. Generate N‑Grams: Create sequences of N consecutive
words from the tokenized text.

 4. Count Occurrences: Count the frequency of each n‑gram in
the dataset.

 5. Calculate Probabilities: Calculate the probability of the next
word given the context of the N‑1 preceding words.

 6. Smoothing (Optional): Apply smoothing techniques to
handle unseen n‑grams and prevent zero probabilities.

 7. Build Language Model: Use the n‑grams and associated
probabilities to build a language model

Formula – Conditional probabilities – p(B|A) = P(A,B)/P(A)
 Chain Rule – P(A,B) = P(A)P(B|A)
 in General – P(x1,x2,x3,…,xn) = P(x1)P(x2 |x1)P(x3 |x1,x2)…

P(xn |x1,…,xn‑1)
Implementation

% Python program

from nltk.util import ngrams
from nltk.tokenize import word_tokenize

Example sentence
sentence = "This is a simple example for generating
bigrams."

Tokenize the sentence into word tokens
tokens = word_tokenize(sentence)

Define the size of N‑grams (in this case, bigrams)
n = 2

Generate bigrams
bigram_list = list(ngrams(tokens, n))

Display the result
print(f"Original sentence: {sentence}")
print(f"Bigrams: {bigram_list}")

24 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Original sentence: This is a simple example for
generating bigrams.
Bigrams: [('This', 'is'), ('is', 'a'), ('a',
'simple'), ('simple', 'example'), ('example', 'for'),
('for', 'generating'), ('generating', 'bigrams'),
('bigrams', '.')]

% Python program

import pandas as pd
from nltk.util import ngrams
from nltk.tokenize import word_tokenize

def generate_ngrams(text, n):
 # Tokenize the text
 tokens = word_tokenize(text)
 # Generate the n‑grams
 n_grams = list(ngrams(tokens, n))
 return n_grams

def create_ngrams_dataframe(text, n):
 # Generate n‑grams from the text
 n_grams = generate_ngrams(text, n)
 # Create a DataFrame from the n‑grams
 n_grams_df = pd.DataFrame(n_grams, columns=
[f'word_{i}' for i in range(1, n+1)])
 return n_grams_df

Example text
example_text = "This is a simple example for
generating N‑grams."

Specify the desired N for N‑grams (e.g., 2 for
bigrams, 3 for trigrams)
desired_n = 4

Generate and display N‑grams in DataFrame
ngrams_dataframe = create_ngrams_dataframe(example_
text, desired_n)
print(ngrams_dataframe)

25INTRODUCTION AND WORD-LEVEL ANALYSIS

% Output:

word_1 word_2 word_3 word_4

0 This is a simple
1 is a simple example
2 a simple example for
3 simple example for generating
4 example for generating N‑grams
5 for generating N‑grams .

1.8 Summary

This chapter provides a foundational introduction to NLP, exploring
its history, fundamental concepts, and various stages of language pro‑
cessing. It discusses the generic NLP system, breaking it down into
different levels and stages, highlighting the challenges posed by ambi‑
guity in natural language. This chapter also introduces key linguistic
components such as words, corpora, and morphology analysis, cover‑
ing both inflectional and derivational morphology, which play a crucial
role in understanding word structures and variations. The discussion
extends to essential preprocessing techniques like stemming, lemmati‑
zation, and normalization, which are used to standardize text for com‑
putational analysis. Tokenization, an essential step in NLP, is explored
in detail, followed by the BoW model, a popular method for text rep‑
resentation. This chapter also delves into pattern‑matching techniques,
including regular expressions, finite automata, and FST, which help in
text parsing and recognition. Finally, it introduces n‑grams language
models, which are widely used for probabilistic text predictions and
linguistic pattern analysis. This chapter sets the stage for deeper discus‑
sions in NLP by establishing the fundamental principles of word‑level
text processing and representation.

References
 1. P. Johri, S. K. Khatri, A. T. Al‑Taani, M. Sabharwal, S. Suvanov, and

A. Kumar, “Natural language processing: History, evolution, applica‑
tion, and future work,” in Proceedings of 3rd International Conference on
Computing Informatics and Networks: ICCIN 2020, Delhi, India, 2021,
pp. 365–375.

26 AI FOR NATURAL LANGUAGE PROCESSING

 2. D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language pro‑
cessing: state of the art, current trends and challenges,” Multimed. Tools
Appl., vol. 82, no. 3, pp. 3713–3744, 2023.

 3. T. P. Nagarhalli, V. Vaze, and N. K. Rana, “Impact of machine learning
in natural language processing: A review,” in 2021 Third International
Conference on Intelligent Communication Technologies and Virtual Mobile
Networks (ICICV), Tirunelveli, India, 2021, pp. 1529–1534, doi:
10.1109/ICICV50876.2021.9388621.

 4. A. I. Kadhim, “An evaluation of preprocessing techniques for text clas‑
sification,” Int. J. Comput. Sci. Inf. Secur., vol. 16, no. 6, pp. 22–32, 2018.

 5. A. Tabassum and R. R. Patil, “A survey on text pre‑processing & feature
extraction techniques in natural language processing,” Int. Res. J. Eng.
Technol., vol. 7, no. 06, pp. 4864–4867, 2020.

 6. G. Kaur, “Usage of regular expressions in NLP,” Int. J. Res. Eng. Technol.,
vol. 3, no. 01, p. 7, 2014.

 7. A. Maletti, “Survey: Finite‑state technology in natural language pro‑
cessing,” Theor. Comput. Sci., vol. 679, pp. 2–17, 2017.

 8. P. Majumder, M. Mitra, and B. B. Chaudhuri, “N‑gram: a language
independent approach to IR and NLP,” in International Conference on
Universal Knowledge and Language (ICUKL2002), Goa, India, 2002.

https://doi.org/10.1109/ICICV50876.2021.9388621
https://doi.org/10.1109/ICICV50876.2021.9388621

DOI: 10.1201/9781003425328-2 27

2
syntactIc anaLysIs

Syntactic processing involves examining a sentence’s grammatical
structure to comprehend its meaning. This entails recognizing the
various parts of speech in a sentence, including adverbs, adjectives,
verbs, and, nouns, and their interrelations to convey the sentence’s
intended meaning. Syntactic analysis is also known as parsing. In syn‑
tactic analysis, the objective is to comprehend the functions of each
word inside the sentence, the interrelations among the words, and
to analyze the grammatical structure of sentences to ascertain their
accurate meaning.

In syntactic analysis, target is to:

• Identify the functions of words within a sentence,
• Analyze the connection among terms,
• Analyze the grammatical composition of sentences.

2.1 Parts of Speech Tagging

Parts of Speech tagging (POS Tagging) [1] involves identifying the
parts of speech of each token. It is the process of annotating a word in
a document to indicate its matching part of speech, determined by its
definition and context. POS tagging, also known as speech tagging
or word category disambiguation, helps understand the relationship
between words, developing linguistic rules, and lemmatization.

Some common tags in nltk are

• CC – Coordinating conjunction
• CD – Cardinal Number
• DT – determiner
• FW – Foreign word

https://doi.org/10.1201/9781003425328-2

28 AI FOR NATURAL LANGUAGE PROCESSING

• IN – Preposition or Subordinating conjunction
• JJ – Adjective
• NN – Noun, singular
• NNS – Noun, plural
• NNP – Proper noun, singular
• NNPS – Proper noun, plural
• RP – Particle
• RB – Adverb
• VB – Verb, base form
• VBZ – Verb, 3rd person singular present
• VBP – Verb, non‑3rd person singular present
• VBN – Verb, past participle
• VBG – Verb, gerund or present participle
• VBD – Verb, past tense

Implementation

% Python program

from nltk.tokenize import word_tokenize
from nltk import pos_tag

Sample sentence
text = "POS tagging is essential for natural language
processing."

Tokenize the sentence into words
words = word_tokenize(text)

Perform part‑of‑speech tagging
pos_tags = pos_tag(words)

Print the results
print("Original Text: \n", text)

print("\nPoS Tagging :")
for word, tag in pos_tags:
 print(f"{word} ‑ {tag}")

% Output:

Original Text:
POS tagging is essential for natural language processing.

29syntaCtiC analysis

PoS Tagging :
POS ‑ NNP
tagging ‑ NN
is ‑ VBZ
essential ‑ JJ
for ‑ IN
natural ‑ JJ
language ‑ NN
processing ‑ NN
. ‑ .

POS‑tagging algorithms are categorized into two major types [2].

• Rule‑ based POS taggers
• Stochastic POS taggers

2.1.1 Rule‑Based Tagging

Rule‑based part‑of‑speech tagging [3] is assigning words their
respective parts of speech using predefined linguistic rules. These
rules are based on linguistic patterns, morphological features, and
syntactic structures. It employs contextual information to provide
tags to unfamiliar or confusing terms. Disambiguation is achieved
by examining the grammatical characteristics of the word, its ante‑
cedent, its subsequent word, and additional factors. Like for exam‑
ple, rules like:

– If a word ends in “‑ing,” it is likely a verb.
– If a word starts with a capital letter and is not at the beginning

of a sentence, it is likely a proper noun.
– Determiners (e.g., “the,” “a”) are often followed by nouns.

2.1.2 Stochastic POS Tagging

Stochastic POS taggers [3] use statistical models and machine learn‑
ing techniques to learn the probability distribution of words given
their POS tags. These models are trained on large annotated corpora,
where words are labeled with their correct POS tags. Stochastic mod‑
els can generalize well to handle unseen words or contexts. The most
basic stochastic taggers resolve word ambiguity exclusively based on
the likelihood of a word being associated with a specific tag. The tag

30 AI FOR NATURAL LANGUAGE PROCESSING

most commonly associated with the word in the training set is applied
to an ambiguous instance of that word.

Implementation

% Python program

import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import RegexpTagger, hmm
from nltk.corpus import brown

Sample sentence
sentence = "Part‑of‑speech tagging is essential for
natural language processing."

Tokenize the sentence into words
words = word_tokenize(sentence)

Rule‑Based POS Tagger
def rule_based_tagger(words):
 rules = [
 (r'.*ed$', 'VBD'), # Past tense verbs
 (r'.*ing$', 'VBG'), # Gerunds
 (r'[A‑Z][a‑z]*$', 'NNP'), # Proper nouns
 (r'.*$', 'NN') # Default to noun
]

 regex_tagger = RegexpTagger(rules)
 return regex_tagger.tag(words)

Stochastic (HMM) POS Tagger
def hmm_tagger(words):
 trainer = hmm.HiddenMarkovModelTrainer()
 model = trainer.train(nltk.corpus.brown.
tagged_sents())
 return model.tag(words)

Apply both taggers
rule_based_tags = rule_based_tagger(words)
hmm_tags = hmm_tagger(words)

Display the results
print("Rule‑Based POS Tags:", rule_based_tags)
print("\nHMM POS Tags:", hmm_tags)

31syntaCtiC analysis

% Output:

Rule‑Based POS Tags: [('Part‑of‑speech', 'NN'),
('tagging', 'VBG'), ('is', 'NN'), ('essential', 'NN'),
('for', 'NN'), ('natural', 'NN'), ('language', 'NN'),
('processing', 'VBG'), ('.', 'NN')]

HMM POS Tags: [('Part‑of‑speech', 'AT'), ('tagging',
'AT'), ('is', 'AT'), ('essential', 'AT'), ('for',
'AT'), ('natural', 'AT'), ('language', 'AT'),
('processing', 'AT'), ('.', 'AT')]

2.2 Stop Words

Stop words [4], are the words that are frequently occurring, are words
that are programmed to ignore intentionally by search engine as they
are perceived to make a minimal contribution to overall comprehen‑
sion of a text.This exclusion occurs during indexing entries for search‑
ing and when presenting search results in response to a query.

Examples include “the,” “is,” “and,” “in,” etc.

% Python program

print(stopwords.words('english')[:20])

% Output:

['a', 'about', 'above', 'after', 'again', 'against',
'ain', 'all', 'am', 'an', 'and', 'any', 'are', 'aren',
"aren't", 'as', 'at', 'be', 'because', 'been']

2.3 Sequence Labeling

Sequence labeling is a natural language processing task that involves
assigning a label or category to each element in a sequence of input
data. In machine learning, this involves pattern recognition.

Two fundamental sequence labeling algorithms are the generative
Hidden Markov Model (HMM) and the discriminative Conditional
Random Field (CRF) [5]. For example, in part‑of‑speech tagging, each
word in a sentence is designated with its appropriate part of speech.

32 AI FOR NATURAL LANGUAGE PROCESSING

2.3.1 Hidden Markov Model

The Hidden Markov Model (HMM) [6] is a statistical model widely
used in various fields, including NLP. HMM is particularly effective
for modeling sequences of observations and the underlying hidden
states that generate them. A Markov chain is a mathematical model
that illustrates a process in which the system shifts from one state to
another. The transition posits that the likelihood of progressing to the
subsequent state is exclusively contingent upon the present condition.
The HMM is an extension of the Markov process utilized to repre‑
sent phenomena in which the states are latent or hidden, yet never‑
theless produce observable outputs. An HMM consists of two main
components: a set of hidden states and a set of observable outputs or
emissions.

• Hidden States: The system has a set of hidden states, and at
any given time, it is in one of these states. However, the actual
state is hidden or not directly observable.

• Observable States (Emissions): Each hidden state emits an
observable output or observation.

In HMM taggers, probabilities are determined using maximum like‑
lihood estimation applied to tag‑labeled training corpora. The Viterbi
algorithm is employed for decoding to identify the most probable tag
sequence. HMM tagging is a generative approach.

Implementation

% Python program

import nltk
from nltk.tag import HiddenMarkovModelTrainer
from nltk.tokenize import word_tokenize

Training data
training_data = [
 [('POS', 'NN'), ('tagging', 'VBG'), ('is', 'VBZ'),
('essential', 'JJ'),
 ('for', 'IN'), ('natural', 'JJ'), ('language',
'NN')],
 [('language', 'NN'), ('processing', 'VBG'), ('is',
'VBZ'), ('important', 'JJ')]
]

33syntaCtiC analysis

Initialize and train the HMM model
trainer = HiddenMarkovModelTrainer()
hmm_model = trainer.train(training_data)

Test sentence
test_sentence = "POS tagging is essential for natural
language processing."

Tokenize the test sentence
tokens = word_tokenize(test_sentence)

Perform POS tagging using the trained model
pos_tags = hmm_model.tag(tokens)

Print the POS tags
print("Test Sentence:", test_sentence)
print("POS Tags:", pos_tags)

% Output:

Test Sentence: POS tagging is essential for natural
language processing.
POS Tags: [('POS', 'NN'), ('tagging', 'VBG'), ('is',
'VBZ'), ('essential', 'JJ'), ('for', 'IN'),
('natural', 'JJ'), ('language', 'NN'), ('processing',
'NN'), ('.', 'NN')]

2.3.2 The Conditional Random Field

Conditional Random Fields (CRFs) [7] are a type of probabilistic
graphical model frequently applied in NLP and computer vision.
They are a variation of Markov Random Fields (MRFs), a type of
undirected graphical model.CRFs excel in structured prediction
tasks, such as POS tagging in NLP, where the objective is to pre‑
dict a structured output based on input features. Tasks like Named
Entity Recognition (NER) and chunking also benefit from CRFs,
especially when the output is a structured sequence. CRFs undergo
training through maximum likelihood estimation, optimizing model
parameters to maximize the probability of the correct output sequence
given input features. Common optimization algorithms like gradient
descent or L‑BFGS are employed for solving this optimization prob‑
lem. CRF tagging is a discriminative approach.

34 AI FOR NATURAL LANGUAGE PROCESSING

Implementation

% Python program

from sklearn_crfsuite import CRF
from sklearn_crfsuite.metrics import flat_accuracy_score
import nltk

Sample Training Data (word, POS tag)
training_data = [
 [('POS', 'NN'), ('tagging', 'VBG'), ('is', 'VBZ'),
('essential', 'JJ'),
 ('for', 'IN'), ('natural', 'JJ'), ('language',
'NN')],
]

Feature extraction function for CRF
def word2features(sent, i):
 word = sent[i][0]
 features = {
 'bias': 1.0,
 'word.lower()': word.lower(),
 'word[‑3:]': word[‑3:],
 'word.istitle()': word.istitle(),
 'word.isupper()': word.isupper(),
 'word.isdigit()': word.isdigit(),
 }

 if i > 0: # Previous word
 prev_word = sent[i‑1][0]
 features.update({
 '‑1:word.lower()': prev_word.lower(),
 '‑1:word.istitle()': prev_word.istitle(),
 '‑1:word.isupper()': prev_word.isupper(),
 })
 else:
 features['BOS'] = True # Beginning of sentence

 if i < len(sent)‑1: # Next word
 next_word = sent[i+1][0]
 features.update({
 '+1:word.lower()': next_word.lower(),
 '+1:word.istitle()': next_word.istitle(),
 '+1:word.isupper()': next_word.isupper(),
 })

35syntaCtiC analysis

 else:
 features['EOS'] = True # End of sentence

 return features

Convert sentences into feature dictionaries
def sent2features(sent):
 return [word2features(sent, i) for i in
range(len(sent))]

Convert sentences into labels (POS tags)
def sent2labels(sent):
 return [label for word, label in sent]

Extract features and labels for training
X_train = [sent2features(sent) for sent in
training_data]
y_train = [sent2labels(sent) for sent in
training_data]

Train the CRF model
crf_model = CRF(algorithm='lbfgs', max_iterations=100,
c1=0.1, c2=0.1)
crf_model.fit(X_train, y_train)

Test sentence
test_sentence = "POS tagging is essential for natural
language processing."

Tokenize the test sentence
tokens = nltk.word_tokenize(test_sentence)

Extract features for the test sentence
test_features = [word2features([(token, '')], 0) for
token in tokens]

Perform POS tagging using the trained CRF model
predicted_tags = crf_model.predict([test_features])[0]

Print the results
print("Test Sentence:", test_sentence)
print("Predicted POS Tags:", predicted_tags)
for token, tag in zip(tokens, predicted_tags):
 print(f"{token}: {tag}")

36 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Test Sentence: POS tagging is essential for natural
language processing.
Predicted POS Tags: ['NN' 'VBG' 'VBZ' 'JJ' 'IN' 'JJ'
'NN' 'VBG' 'NN']
POS: NN
tagging: VBG
is: VBZ
essential: JJ
for: IN
natural: JJ
language: NN
processing: VBG
.: NN

2.4 Context‑Free Grammar (CFG)

Grammar is defined as the rules for forming well‑structured sentences
[8]. Grammar is crucial in outlining the syntactic structure of well‑formed
programs, serving as a set of rules.In simpler terms, Grammar denotes
syntactical rules that are used for conversation in natural languages.

Grammar G can be written as a 4‑tuple (N, T, S, P) where,

• N or V = set of non‑terminal symbols, or variables.
• T or ∑ = set of terminal symbols.
• P = Production rules for Terminals as well as Non‑terminals.
• S = Start symbol where S ∈ N
Set of Non‑terminals (V): Syntactic variables representing sets

of strings, defining the language generated by the grammar.
Set of Terminals (Σ): Also called tokens, these are basic sym‑

bols used to form strings.
Set of Productions (P): Specifies how non‑terminals and termi‑

nals can be combined, each production having non‑terminals,
an arrow, and a sequence of terminals.

Start Symbol (S): The production starts with the designated start
symbol “S,” typically a non‑terminal symbol. Non‑terminals
are always assigned as start symbols.

A context‑free grammar, abbreviated as CFG, is a notation utilized
for defining languages and serves as a superset of regular grammar.

G → (V∪T)*, where G ∊ V

37syntaCtiC analysis

2.5 Parsing

Parsing is a fundamental step in NLP where a sentence is analyzed
to identify its grammatical structure and its underlying structure to
extract meaning from it. This process involves breaking down the sen‑
tence into smaller components to extract meaning, enabling machines
to understand human language by examining the syntax and underly‑
ing structure of the text. It is analyzing the input sentence by breaking it
down into its grammatical constituents, identifying the parts of speech,
and syntactic relations. Parsing with CFGs includes the assignment of
appropriate parse trees to input strings, where the tree encompasses all
and only the constituents of the input, culminating in a root labeled “S.”

2.5.1 Types of Parsing

• Top – Down Parsing: Starts from the root (sentence) and
recursively breaks it down into smaller constituents.

• Bottom‑up Parsing: Starts with words (tokens) and builds up
to the full sentence structure.

% Python program

import nltk

Define the grammar
grammar = nltk.CFG.fromstring("""
S ‑> NP VP
NP ‑> Det N | 'John'
VP ‑> V NP
Det ‑> 'the'
N ‑> 'man'
V ‑> 'saw'
""")

Sentence to parse
sentence = ['the', 'man', 'saw', 'John']

top_down_parser = nltk.RecursiveDescentParser(grammar)

Parse the sentence and print the tree
for tree in top_down_parser.parse(sentence):
 tree.pretty_print()

38 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

S

NP VP

Det N V NP

the man saw John

% Python program

import nltk

Define the grammar
grammar = nltk.CFG.fromstring("""
S ‑> NP VP
NP ‑> Det N | 'John'
VP ‑> V NP
Det ‑> 'the'
N ‑> 'man'
V ‑> 'saw'
""")

Sentence to parse
sentence = ['the', 'man', 'saw', 'John']

bottom_down_parser = nltk.ChartParser(grammar)

Parse the sentence and print the tree
for tree in bottom_down_parser.parse(sentence):
 tree.pretty_print()

% Output:

NP

S

NP

the saw

VP

man John

Det N V

2.5.2 Earley Parsing

Earley parsing [9] is an efficient top‑down parsing algorithm that miti‑
gates some inefficiencies inherent in a merely naïve search employing the

39syntaCtiC analysis

same top‑down approach. Intermediate answers are generated singularly
and recorded in a chart (dynamic programming). The issue of left recursion
is addressed by the analysis of the input. Earley is not selective regarding
the sort of grammar it accommodates; it accepts any context‑free gram‑
mar and populates a table in a single pass over the input.

Steps:

 1. Predict sub‑structure (based on grammar)
 2. Scan partial solutions for a match
 3. Complete a sub‑structure (i.e., build constituents)

Implementation

% Python program

import nltk

Define the grammar
grammar = nltk.CFG.fromstring("""
S ‑> NP VP
NP ‑> Det N | 'John'
VP ‑> V NP
Det ‑> 'the'
N ‑> 'man'
V ‑> 'saw'
""")

Sentence to parse
sentence = ['the', 'man', 'saw', 'John']

Create the EarleyChartParser
earley_parser = nltk.EarleyChartParser(grammar)

Parse the sentence and print the tree
for tree in earley_parser.parse(sentence):
 tree.pretty_print()

% Output:

S

NP VP

Det N V NP

the man saw John

40 AI FOR NATURAL LANGUAGE PROCESSING

2.5.3 Cocke‑Kasami‑Younger Parsing

The Cocke‑Kasami‑Younger (CKY) algorithm [10], the most widely
used dynamic‑programming‑based approach to parsing, is imple‑
mented using a matrix to keep track of partial results. The algorithm
operates on the assumption that the solution to issue [i, j] can be derived
from the solutions to the subproblems [i, k] and [k, j]. The method
necessitates that the Grammar G be in Chomsky Normal Form
(CNF). CNF consists of rules that contain either two non‑terminals or
a terminal on the right‑hand side. Efficient parsing algorithm utilizing
tabulation of substring parses to eliminate redundant computations.

Steps of the CYK algorithm:

 1. Initialization of the parse table.
 2. Filling in the parse table by considering all possible

productions.
 3. Determining whether the start symbol is derivable from the

input string.

Implementation

% Python program

import nltk

Define the grammar
grammar = nltk.CFG.fromstring("""
S ‑> NP VP
NP ‑> Det N | 'John'
VP ‑> V NP
Det ‑> 'the'
N ‑> 'man'
V ‑> 'saw'
""")

Sentence to parse
sentence = ['the', 'man', 'saw', 'John']

cky_parser = nltk.ChartParser(grammar)

Parse the sentence and print the tree
for tree in cky_parser.parse(sentence):
 tree.pretty_print()

41syntaCtiC analysis

% Output:

S

NP VP

V NPDet N

the man saw John

2.6 Probabilistic Context‑Free Grammar

Probabilistic Context‑Free Grammars (PCFGs) are an extension of
traditional CFGs used in the field of computational linguistics and
natural language processing. While CFGs describe the syntactic
structure of languages through a set of production rules, PCFGs
enhance this framework by associating probabilities with each pro‑
duction rule.

Mathematically, the PCFG can be represented as:
G = (N,Σ,P,S,R) where

• N is the set of non‑terminals.
• is the set of terminals.
• P is the set of production rules.
• S is the start symbol.
• R is the set of probabilities associated with each production

rule.

A production rule with probability can be represented as
A→β[p], indicating that the rule A→β has a probability p
Steps:

 1. Define a set of context‑free grammar production rules.
 2. Assign probabilities to each production rule based on observed

frequencies in a training corpus.
 3. Ensure that the probabilities associated with all rules for a

given non‑terminal sum to 1.
 4. Use the PCFG for parsing by selecting production rules

probabilistically during derivation.
 5. Apply the Viterbi algorithm to find the most likely parse tree,

considering rule probabilities.

42 AI FOR NATURAL LANGUAGE PROCESSING

 6. Generate multiple possible parse trees for a sentence, each
with an associated probability.

 7. Train the PCFG by estimating probabilities from annotated
linguistic data

Implementation

% Python program

import nltk

Define a Probabilistic Context‑Free Grammar (PCFG)
pcfg_grammar = nltk.PCFG.fromstring("""
S ‑> NP VP [1.0]
NP ‑> Det N [0.7] | 'John' [0.3]
VP ‑> V NP [0.9] | VP PP [0.1]
Det ‑> 'the' [0.8] | 'a' [0.2]
N ‑> 'man' [0.5] | 'dog' [0.5]
V ‑> 'chased' [0.6] | 'saw' [0.4]
PP ‑> P NP [1.0]
P ‑> 'in' [0.4] | 'on' [0.6]
""")

Input sentence
sentence = ['the', 'man', 'saw', 'John']

Create a PCFG parser
pcfg_parser = nltk.ViterbiParser(pcfg_grammar)

Parse the sentence
for tree in pcfg_parser.parse(sentence):

 tree.pretty_print()

% Output:

S

NP VP

Det N V NP

the man saw John

43syntaCtiC analysis

2.7 Term Frequency and Inverse Document Frequency

The Term Frequency and Inverse Document Frequency (TF‑IDF)
[11,12] representation takes into account the importance of each word
in a document. It is a numerical statistic that reflects the importance
of a word in a document relative to its occurrence across a collection
of documents.

Term Frequency (TF): TF quantifies the occurrence of a term
within a document.

 TF t,d Total number of terms in document d
Number of times term t appears in document d

)(=

Inverse Document Frequency (IDF): IDF quantifies the infre‑
quency of a phrase within a corpus of documents.

 IDF t,D log Number of documents containing term t 1
Total number of documents in the collection D

() =
+





TF‑IDF Calculation: TF‑IDF is derived by multiplying the TF and
IDF values for a certain term within a document.

 TF IDF t,d,D TF t,d IDF t,D() () ()− = ×

where

• D is the collection of documents,
• d is the document,
• t is the term (word).

Steps:

 1. Data Pre‑processing
 2. Calculating Term Frequency
 3. Calculating Inverse Document Frequency
 4. Calculating Product of Term Frequency & Inverse Document

Frequency

Implementation

% Python program

import pandas as pd

44 AI FOR NATURAL LANGUAGE PROCESSING

from sklearn.feature_extraction.text import
TfidfVectorizer

Assign documents
d0 = 'Natural language processing is fascinating'
d1 = 'Processing language using Python'
d2 = 'Python is widely used in data science'

Merge documents into a single corpus
documents = [d0, d1, d2]

Create TfidfVectorizer object
tfidf = TfidfVectorizer()

Get TF‑IDF values
result = tfidf.fit_transform(documents)

Create DataFrame for IDF values
idf_df = pd.DataFrame(data={"Term": tfidf.get_feature_
names_out(), 'IDF': tfidf.idf_})

Create DataFrame for TF‑IDF matrix
tfidf_matrix_df = pd.DataFrame(data=result.toarray(),
columns=tfidf.get_feature_names_out())

Display IDF values
print("\nIDF Values:")
print(idf_df)

Display TF‑IDF Matrix
print("\nTF‑IDF Matrix:")
print(tfidf_matrix_df)

45syntaCtiC analysis

% Output:

IDF Values:
IDF

0
1
2
3
4
5
6
7
8
9
10
11

fascinating

Term

in
is

language
natural

processing
python
science

used
using
widely

1.693147
1.693147
1.287682
1.287682
1.693147
1.287682
1.287682
1.693147
1.693147
1.693147
1.693147

data 1.693147

TF-IDF Matrix:
data

0
fascinating in is language natural processing \

1
2

0
1
2

0.000000
0.000000
0.403016

0.51742
0.00000
0.00000

0.000000
0.000000
0.403016

0.393511
0.000000
0.306504

0.393511
0.459854
0.000000

0.51742
0.00000
0.00000

0.393511
0.459854
0.000000

python
0.000000
0.459854
0.306504

science
0.000000
0.000000
0.403016

used using widely
0.000000
0.000000
0.403016

0.000000
0.604652
0.000000

0.000000
0.000000
0.403016

2.8 Information Extraction

Information extraction involves converting unstructured data into
organized, editable formats. This can include identifying entities
(such as names, locations, organizations) and extracting relevant
information associated with those entities.

Information Extraction Systems find applications in diverse areas,
from summarizing vast text collections to powering conversational
AI systems and virtual assistants like Apple’s Siri, Amazon’s Alexa,
and, Google Assistant highlighting their reliance on sophisticated IE
systems.

Implementation –

% Python program

import spacy

Load the English NLP model from spaCy
nlp = spacy.load("en_core_web_sm")

46 AI FOR NATURAL LANGUAGE PROCESSING

Sample text for information extraction
text = "Apple Inc. is a technology company based in
Cupertino, California. It was founded by Steve Jobs,
Steve Wozniak, and Ronald Wayne in 1976."

Process the text using spaCy
doc = nlp(text)

Extract entities (names, locations, organizations)
entities = [(ent.text, ent.label_) for ent in doc.ents]

Print extracted entities
print("Entities:", entities)

% Output:

Entities: [('Apple Inc.', 'ORG'), ('Cupertino', 'GPE'),
('California', 'GPE'), ('Steve Jobs', 'PERSON'),
('Steve Wozniak', 'PERSON'), ('Ronald Wayne',
'PERSON'), ('1976', 'DATE')]

2.9 Relation Extraction

Relation extraction [13] involves predicting attributes and relation‑
ships for entities within a sentence. Relation extraction involves iden‑
tifying and classifying relationships between entities mentioned in
the text.

This task is fundamental for constructing relation knowledge graphs
and holds immense importance in NLP applications, including sum‑
marization, question answering, sentiment analysis, and structured
search.

Implementation

% Python program

import spacy

Load the spacy English NLP model
nlp = spacy.load("en_core_web_sm")

Sample text for relation extraction
text = "Steve Jobs was one of the founders of Apple Inc."

47syntaCtiC analysis

Process the text using spacy
doc = nlp(text)

Extract relations (founder relationship)
relations = []

for ent in doc.ents:
 if ent.label_ == 'ORG': # Checking for
organization entity
 org_name = ent.text
 elif ent.label_ == 'PERSON' : # Checking for
person entity and making sure org_name is set
 founder_name = ent.text

relations.append((founder_name, 'founder', org_name))

Print the relations
print("Relations:", relations)

Print each entity found in the text
print("\nEntities found:")
for ent in doc.ents:
 print((ent.text, ent.label_))

% Output:

Relations: [('Steve Jobs', 'founder', 'Apple Inc.')]
Entities found:
('Steve Jobs', 'PERSON')
('Apple Inc.', 'ORG')

2.10 Summary

This chapter explores syntactic analysis, a crucial aspect of NLP
that focuses on understanding the grammatical structure of sen‑
tences. It begins with POS tagging, covering both rule‑based
and stochastic approaches. The role of stop words in text process‑
ing is discussed, along with sequence labeling techniques such as
HMM and CRF, which help in tagging words based on contex‑
tual dependencies. This chapter then introduces CFG and parsing
techniques, including top‑down parsing, Earley parsing, and CKY
parsing, which are essential for syntactic structure identification.

48 AI FOR NATURAL LANGUAGE PROCESSING

The concept of PCFG is explored to incorporate statistical proba‑
bilities into grammatical structures. Additionally, this chapter cov‑
ers TF‑IDF, a widely used technique in information retrieval and
text mining. Finally, it discusses information extraction and rela‑
tion extraction, which are critical for identifying structured data
from unstructured text. Overall, this chapter provides a compre‑
hensive understanding of how NLP models analyze and interpret
sentence structures to extract meaningful information.

References
 1. A. R. Martinez, “Part‑of‑speech tagging,” Wiley Interdiscip. Rev.

Comput. Stat., vol. 4, no. 1, pp. 107–113, 2012.
 2. J. Kupiec, “Robust part‑of‑speech tagging using a hidden Markov

model,” Comput. Speech Lang., vol. 6, no. 3, pp. 225–242, 1992.
 3. D. Kumawat and V. Jain, “POS tagging approaches: A comparison,” Int.

J. Comput. Appl., vol. 118, no. 6, 2015.
 4. W. J. Wilbur and K. Sirotkin, “The automatic identification of stop

words,” J. Inf. Sci., vol. 18, no. 1, pp. 45–55, 1992.
 5. J. Lafferty, A. McCallum, F. Pereira, and others, “Conditional ran‑

dom fields: Probabilistic models for segmenting and labeling sequence
data,” in International Conference on Machine Learning (ICML 2001),
University of New South Wales, USA, 2001, p. 3.

 6. V. P. Chandrika, R. Verma, N. Charan, S. Ditheswar, S. Hansika,
and R. Ishwariya, “POS Tagging Using Hidden Markov Models in
Natural Language Processing,” in 2024 International Conference on
Signal Processing, Computation, Electronics, Power and Telecommunication
(IConSCEPT), Puducherry Karaikal, India, 2024, pp. 1–6.

 7. C. Sutton, A. McCallum, and others, “An introduction to conditional
random fields,” Found. Trends®in Mach. Learn., vol. 4, no. 4, pp. 267–373,
2012.

 8. A. McCallum, “Context Free Grammars,” 2004.
 9. J. Aycock and R. N. Horspool, “Practical earley parsing,” Comput. J., vol.

45, no. 6, pp. 620–630, 2002.
 10. M. Nederhof and G. Satta, “Theory of parsing,” Handb. Comput.

Linguist. Nat. Lang. Process., vol. 82, pp. 105–130, 2010.
 11. G. Salton, Modern Information Retrieval, McGraw‑Hill, 1983.
 12. W. I. D. Mining, “Data mining: Concepts and techniques,” Morgan

Kaufinann, vol. 10, no. 559–569, p. 4, 2006.
 13. N. Konstantinova, “Review of relation extraction methods: What is

new out there?,” in Analysis of Images, Social Networks and Texts: Third
International Conference, AIST 2014, Yekaterinburg, Russia, April
10–12, 2014, Revised Selected Papers 3, 2014, pp. 15–28.

DOI: 10.1201/9781003425328-3 49

3
semantIc anaLysIs

In order to assist machines understand meaning, semantic analysis
extracts meaning from language and establishes the framework for a
semantic system. Lexical, grammatical, and syntactic analysis are all
used in semantic analysis to decipher sentence structure and deter‑
mine word meanings so that machines can comprehend language
just as well as people. Lexical semantics, which examines the mean‑
ings of individual words (i.e., dictionary definitions), is the first step
in semantic analysis. The meaning of words that combine to make a
phrase is then examined using semantic analysis, which also looks
at the links between individual words. Words in context are clearly
understood thanks to this analysis. For text analysis to be very accu‑
rate, semantic analysis is essential.

Example – “He used the bat to hit a home run.”
In this context, “bat” refers to a piece of sports equipment used in

games like baseball or cricket.
 ‑“I saw a bat flying in the night sky.”

Here, “bat” refers to the mammal capable of flight.

3.1 Semantic Grammar

The collection of guidelines and precepts that control the meaning of
linguistic constructions is known as semantic grammar. The contri‑
bution of words and phrases to the overall meaning of a sentence or
speech is the focus of these grammars. Semantic grammars explore
the meaning of language elements, as opposed to syntactic grammars,
which concentrate on the form of sentences. In computational linguis‑
tics and NLP, semantic grammars are essential. They enable programs
like sentiment analysis, language translation, and question‑answering
systems by assisting computers in comprehending the intended mean‑
ing of utterances.

https://doi.org/10.1201/9781003425328-3

50 AI FOR NATURAL LANGUAGE PROCESSING

Implementation

% Python program

import nltk

Define a simple semantic grammar
semantic_grammar = nltk.CFG.fromstring("""
S ‑> NP VP
NP ‑> Det N
VP ‑> V NP
Det ‑> 'the'
N ‑> 'cat' | 'dog'
V ‑> 'chased' | 'caught'
""")

Parse a sentence using the defined grammar
sentence = "the cat chased the dog".split()

Create a parser based on the semantic grammar
parser = nltk.ChartParser(semantic_grammar)

Parse the sentence and print the tree
for tree in parser.parse(sentence):
 tree.pretty_print()

% Output:

S

VP

NP

Det N

NP

NV Det

thechased dogcatthe

3.2 Lexical Semantics

It constitutes the initial phase of semantic analysis, where the focus is
on comprehending the meanings of individual words [1]. This process
encompasses the examination of words, sub‑words, affixes (sub‑units),
compound words, and phrases. Collectively, these elements are referred
to as lexical items. In simpler terms, lexical semantics explores the

51semantiC analysis

connections among lexical items, the meaning conveyed by sentences,
and the syntax employed in constructing those sentences.

Implementation

% Python program

from nltk.corpus import wordnet

synonyms = []
antonyms = []

for syn in wordnet.synsets("happy"):
 for lemma in syn.lemmas():
 synonyms.append(lemma.name())
 if lemma.antonyms():
 antonyms.append(lemma.antonyms()[0].name())

print("Synonyms:", set(synonyms))
print("Antonyms:", set(antonyms))

% Output:

Synonyms: {'well‑chosen', 'glad', 'happy', 'felicitous'}
Antonyms: {'unhappy'}

3.3 Lexemes

All variations of a single word are represented by a lemma, a funda‑
mental word form. With a part‑of‑speech and a collection of associ‑
ated word senses, a lexeme [2] is an abstract representation of a word
(as well as all of its forms). (Usually simply written (or called) the
lemma, maybe using a different font). Lexemes are meaning units that
frequently match words or stems. The study of lexical semantics looks
at the connections between words and their different meanings.

3.4 Word Senses

A sense refers to a specific meaning or interpretation of a word in a
given context [3]. Understanding these relationships is essential for
capturing the richness of meaning in natural language and developing
accurate semantic models for computational applications.

52 AI FOR NATURAL LANGUAGE PROCESSING

3.4.1 Hyponymy

It illustrates how a generic term and its examples relate to one another.
In this context, a hypernym is a generic phrase, and hyponyms are
examples of it [4].

Example‑ “Rose” is a hyponym of the hypernym “Flower” since a
rose is a specific type of flower.

– The word color is hypernym, and the colors blue, yellow,
green, etc. are hyponyms.

% Python program

from nltk.corpus import wordnet

hyponyms_color= wordnet.synset('color.n.01').
hyponyms()

print("Hyponyms of 'color':", hyponyms_color)

% Output:

Hyponyms of 'color': [Synset('coloration.n.02'),
Synset('chromatic_color.n.01'),
Synset('complexion.n.01'), Synset('mottle.n.01'),
Synset('achromatic_color.n.01'), Synset('nonsolid_
color.n.01'), Synset('primary_color.n.01'),
Synset('shade.n.02'), Synset('heather_mixture.n.01')]

3.4.2 Homonymy

More than one lexical terms that have distinct meanings yet the same
spelling. It can be characterized as a group of words with similar spell‑
ings or forms but distinct and unconnected meanings. Example‑ “Bat”
can refer to a sports equipment used in baseball or a flying mammal.

% Python program

from nltk.corpus import wordnet

homonym1 = wordnet.synsets('bat') # Flying mammal vs.
sports equipment

53semantiC analysis

homonym2 = wordnet.synsets('bank') # Financial
institution vs. river bank

print("Homonym 1:", homonym1)
print("\nHomonym 2:", homonym2)

% Output:

Homonym 1: [Synset('bat.n.01'), Synset('bat.n.02'),
Synset('squash_racket.n.01'), Synset('cricket_
bat.n.01'), Synset('bat.n.05'), Synset('bat.v.01'),
Synset('bat.v.02'), Synset('bat.v.03'),
Synset('bat.v.04'), Synset('cream.v.02')]

Homonym 2: [Synset('bank.n.01'), Synset('depository_
financial_institution.n.01'), Synset('bank.n.03'),
Synset('bank.n.04'), Synset('bank.n.05'),
Synset('bank.n.06'), Synset('bank.n.07'),
Synset('savings_bank.n.02'), Synset('bank.n.09'),
Synset('bank.n.10'), Synset('bank.v.01'),
Synset('bank.v.02'), Synset('bank.v.03'),
Synset('bank.v.04'), Synset('bank.v.05'),
Synset('deposit.v.02'), Synset('bank.v.07'),
Synset('trust.v.01')]

3.4.3 Polysemy

It is a term or expression with a distinct but connected meaning. To
put it another way, polysemy [5] is the use of the same spelling with
related but distinct meanings. Example‑ “Run” can mean to move
swiftly (e.g., “She runs every morning”) or to operate something (e.g.,
“to run a machine”).

% Python program

from nltk.corpus import wordnet

polysemy = wordnet.synsets('bank') # Different senses
related to finance

print("Polysemy:", polysemy)

54 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Polysemy: [Synset('bank.n.01'), Synset('depository_
financial_institution.n.01'), Synset('bank.n.03'),
Synset('bank.n.04'), Synset('bank.n.05'),
Synset('bank.n.06'), Synset('bank.n.07'),
Synset('savings_bank.n.02'), Synset('bank.n.09'),
Synset('bank.n.10'), Synset('bank.v.01'),
Synset('bank.v.02'), Synset('bank.v.03'),
Synset('bank.v.04'), Synset('bank.v.05'),
Synset('deposit.v.02'), Synset('bank.v.07'),
Synset('trust.v.01')]

3.4.4 Synonymy

A minimum of two lexical terms that have similar meanings but dis‑
tinct spellings. Synonymy [6] refers to the relationship between two or
more words that have different spellings but share similar meanings.
These words are interchangeable in certain contexts. Example – Big/
Large, Begin/Commence, author/writer, fate/destiny

% Python program

from nltk.corpus import wordnet

synonyms = wordnet.synsets('happy') # Synonyms of
'happy'

print("Synonyms:", synonyms)

% Output:

Synonyms: [Synset('happy.a.01'),
Synset('felicitous.s.02'), Synset('glad.s.02'),
Synset('happy.s.04')]

3.4.5 Antonymy

A pair of terms that have different meanings. A linguistic link
between two words with opposing meanings is known as an antonym.
The words in an antonymous pair are opposites. Example – Hot/Cold,
Happy/Sad, life/death, moon/sun

55semantiC analysis

% Python program

from nltk.corpus import wordnet

antonyms = []

for syn in wordnet.synsets("happy"):
 for lemma in syn.lemmas():
 if lemma.antonyms():
 antonyms.append(lemma.antonyms()[0].name())
print("Antonym", set(antonyms))

% Output:

Antonym {'unhappy'}

3.5 Wordnet

WordNet [7] organizes words into synsets, which are collections of
synonyms that each stand for a different idea. It facilitates compre‑
hension of word significance and relationships by capturing different
semantic interactions between words. According to Fellbaum (1998),
the WordNet lexical database is the main source for English sense
relations. With the exception of closed‑class terms, WordNet consists

56 AI FOR NATURAL LANGUAGE PROCESSING

of three separate databases for nouns, verbs, and adjectives/adverbs.
Every database has lemmas with sense annotations. WordNet 3.0 has
4,481 adverbs, 22,479 adjectives, 11,529 verbs, and 117,798 nouns.
Verbs typically have 2.16 senses, while nouns typically have 1.23 senses.
WordNet is accessible online or can be downloaded for local access.

3.6 Word Similarity

Word similarity [8] measures the degree of closeness or relatedness
between two words in terms of meaning. It’s crucial for tasks like
information retrieval, machine translation, and natural language
processing.

The WordNet network’s word distances allow us to calculate the
similarity between two words. The terms are more similar the closer
they are to one another. In this manner, it is possible to determine
statistically that a phone and a computer are comparable, a cat and a
dog are identical, yet a cat and a phone are not!

% Python program

from nltk.corpus import wordnet

Get the synsets for 'dog' and 'cat'
word1 = wordnet.synset('dog.n.01')
word2 = wordnet.synset('cat.n.01')

Calculate the path similarity
similarity_score = word1.path_similarity(word2)

Print the similarity score
print("Similarity between 'dog' and 'cat':",
similarity_score)

% Output:

Similarity between 'dog' and 'cat': 0.2

Similarly, it is possible to quantitatively figure out that a sun and
moon are similar, a car and a bicycle are similar, but sun and a car are
not similar!

57semantiC analysis

% Python program

from nltk.corpus import wordnet

def word_similarity(word1, word2):
 # Get the synsets for the words
 synset1 = wordnet.synsets(word1)
 synset2 = wordnet.synsets(word2)

 if synset1 and synset2:
 # Consider the first synset of each word
 synset1 = synset1[0]
 synset2 = synset2[0]

 # Calculate path similarity
 similarity = synset1.path_similarity(synset2)

 # Return similarity score, or 0.0 if no
similarity found
 return similarity if similarity is not None
else 0.0
 else:
 # One or both words are not found in WordNet
 return 0.0

Example Usage:
similarity_sun_moon = word_similarity("sun", "moon")
similarity_car_bicycle = word_similarity("car",
"bicycle")
similarity_sun_car = word_similarity("sun", "car")

Print the similarity results
print(f"Similarity between 'sun' and 'moon':
{similarity_sun_moon}")
print(f"Similarity between 'car' and 'bicycle':
{similarity_car_bicycle}")
print(f"Similarity between 'sun' and 'car':
{similarity_sun_car}")

% Output:

Similarity between 'sun' and 'moon': 0.2
Similarity between 'car' and 'bicycle': 0.2
Similarity between 'sun' and 'car':
0.08333333333333333

58 AI FOR NATURAL LANGUAGE PROCESSING

3.7 Word Sense Disambiguation

Word Sense Disambiguation (WSD) [9] plays a crucial role in NLP
by helping to figure out the meaning of a word within a specific con‑
text. NLP systems frequently encounter the challenge of accurately
recognizing words, and deciphering the precise meaning of a word
in a given sentence is applicable in various scenarios. WSD is like a
detective for words in the NLP. A word has different meanings in
different situations. For example, the word “bank” could mean a place
where you keep money or the side of a river. When computers read a
sentence, they might get confused about which meaning of a word is
being used. WSD helps the computer figure out the correct meaning
by looking at the context or the other words in the sentence.

There are four main ways to implement WSD.

 1. Dictionary‑ and knowledge‑based methods
 2. Supervised methods
 3. Semi‑supervised methods
 4. Unsupervised methods

Implementation

% Python program

from nltk.wsd import lesk
from nltk.tokenize import word_tokenize

Sample sentence with an ambiguous word
sentence = "I went to the bank to deposit money."

Ambiguous word
ambiguous_word = 'bank'

Tokenize the sentence
tokenized_sentence = word_tokenize(sentence)

Perform WSD using the Lesk algorithm
sense = lesk(tokenized_sentence, ambiguous_word)

59semantiC analysis

Print the disambiguated sense
print(f"Ambiguous Word: {ambiguous_word}")
print(f"Disambiguated Sense: {sense}")
% Output:

Ambiguous Word: bank
Disambiguated Sense: Synset('savings_bank.n.02')

3.7.1 Dictionary Based Approach of WSD

A Dictionary‑Based Approach of WSD [10] involves using dictionar‑
ies or lexical resources to determine the correct meaning or sense of
a word in a given context. This method relies on the definitions and
senses provided in a dictionary to disambiguate words.

Steps:

 1. Context Extraction: Identify the context words surrounding
the target word.

 2. Sense Inventory: Use a sense inventory from a dictionary or
lexical resource.

 3. Matching: Compare the context words with the definitions
or senses to select the most appropriate sense.

3.7.1.1 Lesk Algorithm The popularly used Lesk method is a seminal
dictionary‑based method. The Lesk algorithm [11] is a method used
for WSD, which aims to determine the correct meaning of a word
in a given context. It was introduced by Michael Lesk in 1986 and
is based on the idea of using the context of the surrounding words to
disambiguate the sense of a target word.

Steps

 1. Tokenization: The method of dividing a text into discrete
words or tokens.

 2. Selection of Ambiguous Word: Choosing the word for
which the meaning needs to be disambiguated.

 3. Gather Context Words: Collecting the set of words appear‑
ing in the local context of the ambiguous word.

 4. Retrieve Synsets: Obtaining the possible meanings or senses
(synsets) of the ambiguous word from a lexical resource.

60 AI FOR NATURAL LANGUAGE PROCESSING

 5. Compute Overlap: Calculating the similarity between the
words in the context and the words in the definitions of each
synset.

 6. Select the Best Sense: Choosing the sense with the highest
overlap as the most likely meaning for the ambiguous word

Implementation

% Python program

from nltk.wsd import lesk
from nltk.tokenize import word_tokenize

Example 1
context1 = "I need to deposit my money in the bank."
ambiguous_word1 = "bank"

result1 = lesk(word_tokenize(context1), ambiguous_word1)
print(result1, result1.definition())

Example 2
context2 = "The boat is floating down the river bank."
ambiguous_word2 = "bank"

result2 = lesk(word_tokenize(context2), ambiguous_word2)
print(result2, result2.definition())

Example 3
context3 = "I sat on the bank of the lake, enjoying
the sunset."
ambiguous_word3 = "bank"

result3 = lesk(word_tokenize(context3), ambiguous_word3)
print(result3, result3.definition())

% Output:

Synset('savings_bank.n.02') a container (usually with
a slot in the top) for keeping money at home
Synset('bank.n.07') a slope in the turn of a road or
track; the outside is higher than the inside in order
to reduce the effects of centrifugal force
Synset('bank.v.07') cover with ashes so to control the
rate of burning

61semantiC analysis

3.8 Information Retrieval

Information Retrieval [12–14] in semantic analysis of NLP involves
leveraging semantic understanding to enhance the accuracy and rele‑
vance of retrieving information from large textual datasets. It includes
processing user queries, indexing documents with semantic informa‑
tion, matching queries with documents based on meaning, and rank‑
ing the results to present the most relevant information to the user.

It is efficient retrieval of relevant information from a large collec‑
tion of documents or textual data based on user queries or information
needs. It plays a crucial role in tasks like search engines, document
retrieval, and information extraction.

Information Retrieval (IR) has a few components as the process
aims to efficiently retrieve relevant information by incorporating
semantic understanding into each stage of information retrieval.

 1. Query Processing: Analyze user queries using semantic
analysis techniques to understand the meaning and intent
behind the input.

 2. Indexing: Create an index of the textual data, mapping terms
to their locations, and incorporate semantic analysis to cap‑
ture the meaning of terms.

 3. Semantic Matching: Match user queries with indexed docu‑
ments, employing semantic analysis to understand semantic
similarity, including synonyms and related concepts.

 4. Ranking: Rank retrieved documents based on their relevance
to the user query, utilizing semantic analysis to assign weights
to terms and concepts for accurate ranking.

Example

% Python program

from sklearn.feature_extraction.text import
TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

Sample documents in a dataset
documents = [
 "Semantic analysis involves understanding the
meaning of text.",

62 AI FOR NATURAL LANGUAGE PROCESSING

 "Information retrieval is the process of obtaining
information from a large dataset.",
 "The TfidfVectorizer is a tool for transforming
text data into a numerical format for analysis."
]

User query
query = "What is semantic analysis in NLP?"

Apply TF‑IDF vectorization
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(documents)

Transform the user query into a vector
query_vector = vectorizer.transform([query])

Calculate cosine similarity between the query and
each document
cosine_similarities = cosine_similarity(query_vector,
tfidf_matrix)

Find the most relevant document
most_relevant_document_index = cosine_similarities.
argmax()

Print the most relevant document
print("User Query:", query)
print("Most Relevant Document:")
print(documents[most_relevant_document_index])

% Output:

User Query: What is semantic analysis in NLP?
Most Relevant Document:
Semantic analysis involves understanding the meaning
of text.

Information retrieval (IR) is a software program managing the
organization, storage, and retrieval of textual information. It helps
users locate information by indicating the existence and location of
potentially relevant documents in repositories. The goal is to retrieve
documents that meet user requirements, aiming for a system that
exclusively returns relevant information.

63semantiC analysis

3.9 Summary

This chapter delves into semantic analysis, a key aspect of NLP that
focuses on understanding the meaning of words and their relation‑
ships within a language. It introduces semantic grammars and lexical
semantics, which help in defining the structure and meaning of words
in different contexts. Various linguistic phenomena, such as homon‑
ymy (words with multiple meanings), polysemy (words with related
meanings), synonymy (words with similar meanings), and hyponymy
(hierarchical word relationships), are explored to illustrate the com‑
plexity of word meaning. This chapter also discusses WordNet, a large
lexical database that organizes words based on their semantic relation‑
ships, and word similarity measures, which are crucial for applications
like information retrieval and text classification. A key focus is WSD,
which helps in determining the correct meaning of a word in a given
context. Both dictionary‑based approaches and computational tech‑
niques for WSD are examined. Lastly, this chapter explores informa‑
tion retrieval, demonstrating how semantic analysis enhances search
engines, document classification, and text mining by improving the
accuracy of extracting relevant information from large text datasets.

References
 1. C. Paradis, “Lexical semantics,” in C.A. Chapelle (ed.) The Encyclopedia

of Applied Linguistics, Wiley‑Blackwell, Hoboken, NJ, 2012.
 2. F. Nemo, “Morphemes and lexemes versus ‘Morphemes or Lexemes?,’”

in Proceeding of the Mediterranean Morphology Meetings, Catania, 2003,
pp. 195–208.

 3. D. McCarthy, “Word sense disambiguation: An overview,” Lang.
Linguist. Compass, vol. 3, no. 2, pp. 537–558, 2009.

 4. S. A. Alex, R. Bellad, A. Sumod, and S. P. Sawkar, “A review on scopes
and issues in green complier, solving synonym, homonym, hyponym and
polysemy problems and translation of English algorithm in C program
using SDT,” Int. J. Res. Eng. Sci. Manag., vol. 2, no. 5, pp. 316–320,
2019.

 5. S. T. Gries, “Polysemy,” Handb. Cogn. Linguist., vol. 39, pp. 472–490,
2015.

 6. Y. Ravin, “Synonymy from a computational point of view,” in A. Lehrer
and E. F. Kittay (eds.) Frames, Fields, and Contrasts, Routledge, London,
2012, pp. 397–420.

64 AI FOR NATURAL LANGUAGE PROCESSING

 7. J. Morato, M. A. Marzal, J. Lloréns, and J. Moreiro, “Wordnet appli‑
cations,” in Proceedings of Global Wordnet Conference, Czech Republic,
2004, pp. 20–23.

 8. R. Navigli and F. Martelli, “An overview of word and sense similarity,”
Nat. Lang. Eng., vol. 25, no. 6, pp. 693–714, 2019.

 9. E. Agirre, “Word sense disambiguation: Algorithms and applications,”
Springer Google Sch., vol. 2, pp. 1166–1174, 2007.

 10. R. Kumar, R. Khanna, and V. Goyal, “A review of literature on word
sense disambiguation,” Int. J. Eng. Sci., vol. 6, pp. 224–230, 2012.

 11. A. A. Gadzhiev and A. K. Khmelev, “Lesk algorithm and babelfy sys‑
tem for disambiguation,” Appl. Linguist., vol. 36, p. 55.

 12. T. Brants, “Natural language processing in information retrieval,”
CLIN, vol. 111, pp. 1–13, 2003.

 13. A. F. Smeaton, “Using NLP or NLP resources for information retrieval
tasks,” in T. Strzalkowski (eds) Natural Language Information Retrieval,
Springer, Hoboken, NJ, 1999, pp. 99–111.

 14. D. D. Lewis and K. S. Jones, “Natural language processing for informa‑
tion retrieval,” Commun. ACM, vol. 39, no. 1, pp. 92–101, 1996.

DOI: 10.1201/9781003425328-4 65

4
dIscourse and

PragmatIc anaLysIs

4.1 Important Terms

Discourse refers to a cohesive and structured group of sentences.
It goes beyond individual sentences and involves the arrangement of
sentences in a way that makes them interconnected and meaning‑
ful. Discourse is not just a collection of random sentences; instead,
it forms a unified and organized composition. Discourse refers to
spoken or written communication, often involving longer stretches
of language than individual sentences. It involves the organization of
language beyond the sentence level to convey meaning.

Cohesion refers to the grammatical and lexical mechanisms that
connect different parts of a text and make it cohesive or stick together.
It includes features like pronoun usage, conjunctions, and repetition
that link sentences and paragraphs.

Cohesive describes something that is being unified. In the context
of language, it refers to the elements within a text being connected
and logically related, contributing to the overall flow and clarity.

Discourse structure is the organization and arrangement of ele‑
ments in spoken or written communication. It involves how sentences
and paragraphs are structured to convey a coherent and meaningful
message. It encompasses the overall architecture of a piece of discourse.

Adjacency pairs are a concept in conversation analysis, represent‑
ing pairs of utterances that are closely related and linked. One person’s
statement or question is followed by a specific and expected response
from another person. Examples include question‑answer pairs or
greeting‑response pairs.

https://doi.org/10.1201/9781003425328-4

66 AI FOR NATURAL LANGUAGE PROCESSING

Coherence is used to describe the relationship between sentences
that creates a sense of unity and structure within a discourse. Coherence
is what distinguishes a well‑organized and purposeful arrangement of
sentences from a random assortment. It implies that there is a logical
and meaningful connection between the sentences, contributing to
the overall flow and comprehensibility of the discourse.

Implementation

% Python program

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords

Sample text
text = "Discourse refers to spoken or written
communication. Cohesion involves the organization of
language: beyond individual sentences."

Tokenize sentences and words
sentences = sent_tokenize(text)
words = word_tokenize(text)

Remove stopwords for cohesion analysis
stop_words = set(stopwords.words('english'))
filtered_words = [word.lower() for word in words if
word.lower() not in stop_words and word.isalpha()]

Calculate cohesion (example: pronoun usage)
pronoun_count = filtered_words.count('it') + filtered_
words.count('its') + filtered_words.count('they') +
filtered_words.count('them')

Discourse structure analysis
discourse_structure = {
 'Sentences': sentences,
 'Word_Count': len(words),
 'Cohesive': pronoun_count > 0 # Cohesive if any
pronouns are used
}

67DisCourse anD PragmatiC analysis

Display results
print("Sentences:", discourse_structure['Sentences'])
print("Word Count:", discourse_structure['Word_Count'])
print("Cohesive:", discourse_structure['Cohesive'])

% Output:

Sentences: ['Discourse refers to spoken or written
communication.', 'Cohesion involves the organization
of language: beyond individual sentences.']
Word Count: 19
Cohesive: False

Implementation of adjacency pairs

% Python program

import nltk
from nltk.tokenize import sent_tokenize

Sample conversation
conversation = "How are you? I'm good, thank you!
What's your name? My name is John. Nice to meet you!
Nice to meet you too!"

Tokenize into sentences
sentences = sent_tokenize(conversation)

Identify adjacency pairs (questions and responses)
adjacency_pairs = []

for i in range(0, len(sentences)‑1, 2): # Loop
through sentence pairs
 # Ensure we don't go out of bounds
 pair = (sentences[i], sentences[i+1])
 adjacency_pairs.append(pair)

Display adjacency pairs
for i, pair in enumerate(adjacency_pairs, 1):
 print(f"Pair {i}:")
 print("Question:", pair[0])
 print("Response:", pair[1])
 print()

68 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Pair 1:
Question: How are you?
Response: I'm good, thank you!

Pair 2:
Question: What's your name?
Response: My name is John.

Pair 3:
Question: Nice to meet you!
Response: Nice to meet you too!

4.2 Ethnography of Speaking

Ethnography of speaking allows NLP models to navigate the nuances of
language with greater finesse [1]. Ethnography of speaking is an approach
that investigates how people use language in their everyday lives within
specific cultural and social contexts. It aims to unveil the embedded
norms, rituals, and social structures influencing verbal communication.
In NLP, incorporating ethnographic insights provides a deeper under‑
standing of language variations and cultural nuances, allowing models
to better comprehend and generate contextually appropriate responses.
NLP systems, when informed by the ethnography of speaking, can navi‑
gate diverse linguistic landscapes more effectively. Cultural sensitivity
becomes paramount, enabling models to recognize variations in language
use and adapt responses to align with cultural expectations.

Example
User:

“Hey, what’s up?”
NLP System (Trained with Ethnographic Data):

“Hey! Not much, how can I assist you today?”
In this example, the NLP system’s response reflects an understand‑

ing of the informal greeting “Hey, what’s up?” based on the ethno‑
graphic insights gathered from the community’s linguistic practices.
This implementation of ethnography of speaking enhances the sys‑
tem’s ability to engage users in a culturally sensitive and contextually
relevant manner.

69DisCourse anD PragmatiC analysis

4.3 Implicature

Implicature [2] refers to the phenomenon where speakers convey more
meaning than explicitly stated. In the context of NLP, recogniz‑
ing implicatures is crucial for understanding the richness of human
communication.

NLP algorithms are designed to identify conversational implica‑
tures by analyzing linguistic nuances and contextual cues. This capa‑
bility enhances the system’s ability to grasp implied meanings and
respond appropriately in natural language interactions.

Implicature recognition contributes to more nuanced sentiment
analysis in NLP. By discerning subtle implied sentiments, systems
can generate responses that align more closely with the underlying
emotional tone of the user.

Example
User Inquiry in a Virtual Assistant:

User: “Is it hot outside?”
Implicit meaning: The user is likely looking for weather

information.

In an NLP system with implicature recognition, the virtual assis‑
tant understands the implied intent and responds with the relevant
weather forecast without the user explicitly mentioning it.

4.4 Cooperative Principle

The Cooperative Principle, proposed by philosopher H.P. Grice [3],
underlines the inherent cooperative nature of communication. It con‑
sists of four maxims – quantity, quality, relation, and manner – that
speakers adhere to in order to achieve effective communication. NLP
models are programmed to adhere to the Cooperative Principle,
ensuring that responses generated in dialogue systems align with the
principles of informativeness, truthfulness, relevance, and clarity.
Understanding the Cooperative Principle aids NLP systems in miti‑
gating potential misunderstandings. By aligning responses with the
principles of cooperative communication, systems can generate more
contextually relevant and user‑friendly outputs.

70 AI FOR NATURAL LANGUAGE PROCESSING

Example
User: “I can’t find my keys.”
NLP System: “Did you check the usual spots like your pockets, desk,
or the kitchen counter?”

The NLP system adheres to the Cooperative Principle by providing
relevant and helpful information, assuming that the user might appre‑
ciate suggestions for likely locations where the keys might be found.

Implementation

% Python program

import nltk
from nltk.tokenize import word_tokenize
from nltk import pos_tag

Function to check if a sentence follows the
cooperative principle
def follows_cooperative_principle(sentence):
 # Check if the sentence contains polite and
relevant information
 return "please" in sentence.lower() and
"information" in sentence.lower()

Function to analyze implicature in a sentence
def analyze_implicature(sentence):
 # Tokenize and tag parts of speech
 tokens = word_tokenize(sentence)
 tagged_tokens = pos_tag(tokens)

 implicature_found = False

 # Check for implicature patterns (simple
pattern‑based check)
 for i in range(len(tagged_tokens) ‑ 1):
 # Look for sentences with modal verbs or
negations that might imply something
 if tagged_tokens[i][1] in ['MD', 'VB'] and
tagged_tokens[i+1][1] == 'VB':
 implicature_found = True
 break

 return implicature_found

71DisCourse anD PragmatiC analysis

Example conversation
conversation = [
 "Can you please provide me with the information?",
 "I can't do that.",
 "Why not?",
 "I'm currently busy."
]

Analyze each statement in the conversation
for statement in conversation:
 print("Statement:", statement)

 # Check if the statement follows the cooperative
principle
 if follows_cooperative_principle(statement):
 print("Follows Cooperative Principle: Yes")
 else:
 print("Follows Cooperative Principle: No")

 # Check for implicature in the statement
 if analyze_implicature(statement):
 print("Implicature Found: Yes\n")
 else:
 print("Implicature Found: No\n")

% Output:

Statement: Can you please provide me with the
information?
Follows Cooperative Principle: Yes
Implicature Found: Yes

Statement: I can't do that.
Follows Cooperative Principle: No
Implicature Found: No

Statement: Why not?
Follows Cooperative Principle: No
Implicature Found: No

Statement: I'm currently busy.
Follows Cooperative Principle: No
Implicature Found: No
% Python program

72 AI FOR NATURAL LANGUAGE PROCESSING

import nltk
from nltk.tokenize import word_tokenize
from nltk import pos_tag, ne_chunk

Function to identify entities in a sentence
def identify_entities(sentence):
 tokens = word_tokenize(sentence) # Tokenize the
sentence
 tagged = pos_tag(tokens) # Part‑of‑speech tagging
 entities = ne_chunk(tagged) # Named entity
recognition
 return entities

Example usage
sentence = "Apple is planning to launch a new product."
schema_script_result = identify_entities(sentence)

print(schema_script_result)

% Output:

(S
 (GPE Apple/NNP)
 is/VBZ
 planning/VBG
 to/TO
 launch/VB
 a/DT
 new/JJ
 product/NN
 ./.)

4.5 Schema‑Script

Schema‑scripts [4], cognitive structures in the mind, serve as frame‑
works that help individuals comprehend and predict events. In NLP,
these frameworks become essential for machines to understand and
interpret the implied structure and order in language. NLP systems
utilize schema‑script knowledge to understand the expected struc‑
ture of textual information, enabling them to extract meaningful
insights and relationships between different elements in a document.
By incorporating schema‑scripts, NLP models can predict likely

73DisCourse anD PragmatiC analysis

events or actions based on the context provided, enhancing their
ability to generate coherent and contextually relevant responses

Implementation

% Python program

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk import pos_tag
from nltk.chunk import RegexpParser

Function to analyze turns and topics in a
conversation
def analyze_turns_and_topics(conversation):
 # Tokenizing the conversation into sentences
 sentences = sent_tokenize(conversation)

 # Analyzing turn‑taking patterns
 for i, sentence in enumerate(sentences):
 speaker = "User" if i % 2 == 0 else "Bot"
 print(f"{speaker}: {sentence}")

 # Defining a simple rule‑based grammar for topic
shifts
 grammar = """
 TOPIC_SHIFT: {<VB.*><.*>*}
 """

 # Chunking sentences and identifying topic shifts
 for sentence in sentences:
 tokens = word_tokenize(sentence)
 tagged = pos_tag(tokens)

 # Create the chunk parser with the defined
grammar
 chunk_parser = RegexpParser(grammar)
 tree = chunk_parser.parse(tagged)

 # Check for subtrees with label 'TOPIC_SHIFT'
 for subtree in tree.subtrees():
 if subtree.label() == 'TOPIC_SHIFT':
 print(f"\nTopic Shift Detected:
{subtree.leaves()}")

74 AI FOR NATURAL LANGUAGE PROCESSING

Example conversation
conversation = """
How are you doing today? I'm good, thanks for asking!
What's the weather like? It's sunny today, perfect for
a walk.
Can you help me with the project? Sure, let's start
with the requirements.
How about the budget? We can discuss the budget once
the project plan is set.
"""

Analyze the conversation for turns and topic shifts
analyze_turns_and_topics(conversation)

% Output:

User:
How are you doing today?
Bot: I'm good, thanks for asking!
User: What's the weather like?
Bot: It's sunny today, perfect for a walk.
User: Can you help me with the project?
Bot: Sure, let's start with the requirements.
User: How about the budget?
Bot: We can discuss the budget once the project plan
is set.

Topic Shift Detected: [('are', 'VBP'), ('you', 'PRP'),
('doing', 'VBG'), ('today', 'NN'), ('?', '.')]

Topic Shift Detected: [("'m", 'VBP'), ('good', 'JJ'),
(',', ','), ('thanks', 'NNS'), ('for', 'IN'),
('asking', 'VBG'), ('!', '.')]

Topic Shift Detected: [("'s", 'VBZ'), ('the', 'DT'),
('weather', 'NN'), ('like', 'IN'), ('?', '.')]

Topic Shift Detected: [("'s", 'VBZ'), ('sunny', 'JJ'),
('today', 'NN'), (',', ','), ('perfect', 'NN'), ('for',
'IN'), ('a', 'DT'), ('walk', 'NN'), ('.', '.')]

Topic Shift Detected: [('help', 'VB'), ('me', 'PRP'),
('with', 'IN'), ('the', 'DT'), ('project', 'NN'),
('?', '.')]

75DisCourse anD PragmatiC analysis

Topic Shift Detected: [('let', 'VB'), ("'s", 'POS'),
('start', 'VB'), ('with', 'IN'), ('the', 'DT'),
('requirements', 'NNS'), ('.', '.')]

Topic Shift Detected: [('discuss', 'VB'), ('the',
'DT'), ('budget', 'NN'), ('once', 'IN'), ('the',
'DT'), ('project', 'NN'), ('plan', 'NN'), ('is',
'VBZ'), ('set', 'VBN'), ('.', '.')]

4.6 Conversational Analysis

Conversational analysis in NLP [5] is about going beyond the lit‑
eral meaning of words and understanding the dynamics of human
communication. By incorporating these insights, NLP systems can
engage in more natural, contextually aware, and meaningful conversa‑
tions with users. Conversational analysis in NLP, involves examining
the structure, patterns, and dynamics of dialogues or conversations
to understand how communication unfolds. This analysis is crucial
for natural language processing systems to generate more contextu‑
ally appropriate and coherent responses, as well as to interpret the
intended meaning behind user input. Conversational analysis in the
context of discourse and pragmatic analysis in NLP is as:

• Turn‑Taking Patterns: Examining how speakers alternate
in a conversation. Helps develop dialogue systems for natural
and fluid interactions.

• Pauses and Interruptions: Analyzing breaks and disruptions
in conversation. Enables systems to respond appropriately to
pauses and changes in flow.

• Conversational Flow: Assessing the smoothness of conversa‑
tion. Ensures coherent responses for better user engagement.

• Shifts in Topic: Identifying changes in conversation topics.
Helps generate contextually relevant responses.

• Sentiment Analysis: Analyzing emotional tone in conver‑
sation. Recognizes emotions for empathetic and appropriate
responses.

• Pragmatic Implications: Examining implied meaning in
utterances. Aids in understanding indirect speech acts for
accurate responses.

76 AI FOR NATURAL LANGUAGE PROCESSING

Implementation

% Python program

Example conversation 2
conversation_2 = """
How are you today?
I'm doing well, thanks for asking! How about you?
I'm good too, just a bit tired.
I understand, a good rest should help. Do you have any
plans for the day?
I was thinking about going to the park later.
That sounds like a great idea! The weather is perfect
for it.
Yeah, it's been sunny all day.
Hopefully, it stays nice for you. What will you do in
the park?
"""

Analyze the conversation for turns and topic shifts
(Conversation 2)
print("Conversation 2 Analysis:\n")
analyze_turns_and_topics(conversation_2)

% Output:

Conversation 2 Analysis:

User:
How are you today?
Bot: I'm doing well, thanks for asking!
User: How about you?
Bot: I'm good too, just a bit tired.
User: I understand, a good rest should help.
Bot: Do you have any plans for the day?
User: I was thinking about going to the park later.
Bot: That sounds like a great idea!
User: The weather is perfect for it.
Bot: Yeah, it's been sunny all day.
User: Hopefully, it stays nice for you.
Bot: What will you do in the park?

Topic Shift Detected: [('are', 'VBP'), ('you', 'PRP'),
('today', 'NN'), ('?', '.')]

77DisCourse anD PragmatiC analysis

Topic Shift Detected: [("'m", 'VBP'), ('doing',
'VBG'), ('well', 'RB'), (',', ','), ('thanks', 'NNS'),
('for', 'IN'), ('asking', 'VBG'), ('!', '.')]

Topic Shift Detected: [("'m", 'VBP'), ('good', 'JJ'),
('too', 'RB'), (',', ','), ('just', 'RB'), ('a',
'DT'), ('bit', 'NN'), ('tired', 'JJ'), ('.', '.')]

Topic Shift Detected: [('understand', 'VBP'), (',',
','), ('a', 'DT'), ('good', 'JJ'), ('rest', 'NN'),
('should', 'MD'), ('help', 'VB'), ('.', '.')]

Topic Shift Detected: [('Do', 'VBP'), ('you', 'PRP'),
('have', 'VB'), ('any', 'DT'), ('plans', 'NNS'), ('for',
'IN'), ('the', 'DT'), ('day', 'NN'), ('?', '.')]

Topic Shift Detected: [('was', 'VBD'), ('thinking',
'VBG'), ('about', 'RB'), ('going', 'VBG'), ('to',
'TO'), ('the', 'DT'), ('park', 'NN'), ('later', 'RB'),
('.', '.')]

Topic Shift Detected: [('sounds', 'VBZ'), ('like',
'IN'), ('a', 'DT'), ('great', 'JJ'), ('idea', 'NN'),
('!', '.')]

Topic Shift Detected: [('is', 'VBZ'), ('perfect',
'JJ'), ('for', 'IN'), ('it', 'PRP'), ('.', '.')]

Topic Shift Detected: [(''', 'VBD'), ('s', 'RB'),
('been', 'VBN'), ('sunny', 'JJ'), ('all', 'DT'),
('day', 'NN'), ('.', '.')]

Topic Shift Detected: [('stays', 'VBZ'), ('nice',
'JJ'), ('for', 'IN'), ('you', 'PRP'), ('.', '.')]

Topic Shift Detected: [('do', 'VB'), ('in', 'IN'),
('the', 'DT'), ('park', 'NN'), ('?', '.')]

4.7 Deciphering Meaning and Coherence of Text Data

Concepts like endophora, exophora, and various types of context
play a crucial role in deciphering the meaning and coherence of tex‑
tual data.

78 AI FOR NATURAL LANGUAGE PROCESSING

4.7.1 Endophora

Endophora [6] refers to the reference within a text, where a word or
phrase refers to something previously mentioned or alluded to in the
same discourse. Recognizing and resolving endophoric references is
essential for maintaining coherence in a document or conversation.

Example
User: I bought a new phone. It has an amazing camera.

In this example, “It” in the second sentence is an example of
endophora, referring back to the previously mentioned “new phone.”

4.7.2 Exophora

Exophora [7], on the other hand, involves references outside the cur‑
rent text or discourse. The reference is established beyond the imme‑
diate linguistic context. Understanding exophoric references is crucial
for interpreting the intended meaning when the context lies outside
the current text.

Example
User: Look at that beautiful building!

In this case, “that” is an exophoric reference as it points to some‑
thing external to the text, and the interpretation depends on the situ‑
ational context.

Implementation

% Python program

import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk

Function to identify endophora and exophora in a
sentence
def identify_endophora_exophora(sentence):
 # Tokenize and tag the sentence
 tokens = word_tokenize(sentence)
 tagged_tokens = pos_tag(tokens)

79DisCourse anD PragmatiC analysis

 # Perform Named Entity Recognition (NER)
 named_entities = ne_chunk(tagged_tokens)

 # Identify and print named entities in the
sentence
 named_entity_found = False
 for subtree in named_entities:
 if isinstance(subtree, nltk.Tree): # A
subtree is a named entity
 entity_label = subtree.label()
 # Look for common named entity labels like
'PERSON', 'GPE' (Geopolitical Entity), etc.
 if entity_label in ['PERSON', 'GPE',
'ORGANIZATION']:
 named_entity_found = True
 print(f"Named entity: {subtree.
leaves()} ({entity_label})")

 if not named_entity_found:
 print("No named entities found in the
sentence.")

 # Identify pronouns and check for endophora or
exophora
 pronouns = [token for token, pos in tagged_tokens
if pos == 'PRP']

 for pronoun in pronouns:
 if pronoun.lower() in ['he', 'she', 'it']:
 # Exophoric expression referring outside
the text
 print(f"Exophoric expression: {pronoun}")
 else:
 # Endophoric expression referring within
the text
 print(f"Endophoric expression: {pronoun}")

Example usage
sentence = "John visited the museum. He enjoyed the
exhibits, and it was a great experience."
identify_endophora_exophora(sentence)

80 AI FOR NATURAL LANGUAGE PROCESSING

% Output:

Named entity: [('John', 'NNP')] (PERSON)
Exophoric expression: He
Exophoric expression: it

4.8 Discourse Context and Its Types

Discourse context in NLP [8] refers to the broader context within
which individual utterances or sentences are situated. It encompasses
the surrounding linguistic environment, such as preceding and fol‑
lowing sentences, paragraphs, or even entire conversations or docu‑
ments. Understanding discourse context is crucial for interpreting the
intended meaning of a specific expression and is an essential aspect of
advanced language understanding in NLP.

Importance of Discourse Context:

• Discourse context is crucial for resolving coreferences, such as
pronouns, by identifying the entities they refer to within the
discourse.

• NLP systems generating text benefit from understanding and
maintaining coherence with the existing discourse context,
ensuring that responses are contextually relevant and flow
naturally.

• Recognizing the discourse context helps NLP models grasp
the nuances, intentions, and relationships between differ‑
ent elements in a text, leading to more accurate language
comprehension.

Types of Discourse Context:

• Anaphoric Context
Anaphoric context involves the relationship between a

word or phrase and its antecedent (a word or phrase men‑
tioned earlier in the text). Resolving anaphoric references is
crucial for understanding which entities are being referred to
within the discourse.

Example: “John bought a new car. He loves the features.”
In this example, “He” is an anaphoric reference that points

back to “John” in the previous sentence.

81DisCourse anD PragmatiC analysis

• Cataphoric Context
Cataphoric context, in contrast to anaphoric context, occurs

when a word or phrase refers to something mentioned later in
the discourse. This requires anticipation of information that
follows in the text.

Example: “After the long day, John arrived home. There, he
found a surprise waiting for him.”

Here, “There” is a cataphoric reference that anticipates the
information about the surprise, which follows in the subse‑
quent sentence.

• Exophoric Context
Exophoric context involves references to elements outside

the text, relying on shared knowledge between the speaker
and the listener. This can include references to objects, loca‑
tions, or events in the real‑world context.

Example: “Look at that beautiful sunset!”
The term “that” in this context relies on shared visual or

situational knowledge between the speaker and the listener.

Implementation

% Python program

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.tag import pos_tag

def analyze_discourse_context(text):
 sentences = sent_tokenize(text) # Tokenize the
text into sentences

 for i in range(len(sentences) ‑ 1):
 current_sentence = sentences[i]
 next_sentence = sentences[i + 1]

 current_tokens = word_tokenize(current_
sentence) # Tokenize current sentence
 next_tokens = word_tokenize(next_sentence) #
Tokenize next sentence

82 AI FOR NATURAL LANGUAGE PROCESSING

 current_pos_tags = pos_tag(current_tokens) #
Part‑of‑speech tagging for current sentence

 # Anaphoric context (refers to something
mentioned earlier in the text)
 anaphoric_references = [token for token, pos
in current_pos_tags if pos == 'PRP' and token.lower()
in ['he', 'she', 'it']]

 if anaphoric_references:
 print(f"Anaphoric reference in '{current_
sentence}': {anaphoric_references} refers to something
in the previous sentence.")

 # Cataphoric context (anticipates something in
the next sentence)
 cataphoric_references = [next_tokens[0] for
token, pos in current_pos_tags if pos == 'DT' and
token.lower() in ['this', 'that']]

 if cataphoric_references:
 print(f"Cataphoric reference in '{current_
sentence}': {cataphoric_references} anticipates
something in the next sentence.")

 # Exophoric context (relies on shared
knowledge outside the text)
 exophoric_references = [token for token in
current_tokens if token.lower() in ['there', 'that']]

 if exophoric_references:
 print(f"Exophoric reference in '{current_
sentence}': {exophoric_references} relies on shared
knowledge outside the text.")

Example usage
text = "John bought a new car. He loves the features.
This car is impressive. Look at that beautiful sunset!"
analyze_discourse_context(text)

% Output:

Anaphoric reference in 'He loves the features.':
['He'] refers to something in the previous sentence.

Cataphoric reference in 'This car is impressive.':
['Look'] anticipates something in the next sentence.

83DisCourse anD PragmatiC analysis

4.9 Speech Acts

In pragmatic analysis, speech acts [9] refer to the actions that speakers
perform with their utterances beyond conveying literal meanings. These
actions can be categorized into two main types: direct speech acts and
indirect speech acts. Understanding these distinctions is essential in
NLP for machines to accurately interpret and respond to user inputs.
In NLP, recognizing and understanding speech acts, whether direct
or indirect, is crucial for machines to generate appropriate responses.
This involves not only parsing the literal meaning of the words but also
grasping the intended illocutionary force behind the utterance. NLP
systems that incorporate pragmatic analysis can better handle user
requests, commands, and queries by considering the broader context
and implied meanings in communication. This leads to more contextu‑
ally relevant and human‑like interactions between users and machines.

4.9.1 Direct Speech Act

Direct speech acts involve explicit and straightforward communica‑
tion, where the speaker’s intended meaning aligns with the literal
interpretation of the words used. In other words, the speaker directly
conveys their intention through the uttered sentence without relying
on additional context or implicit cues.

Example

Request: “Pass me the salt.”
Command: “Close the door.”
Statement: “I will be there at 3 PM.”
Question: “What is your name?”

In each of these examples, the speaker’s intention is clear, and the
meaning of the utterance is directly correlated with the illocutionary
force (intended action) of the speech act.

4.9.2 Indirect Speech Act

Indirect speech acts [10] involve a more nuanced form of commu‑
nication, where the speaker conveys their intention indirectly, often

84 AI FOR NATURAL LANGUAGE PROCESSING

relying on context, shared knowledge, or pragmatic inference. The lit‑
eral meaning of the words may not directly correspond to the intended
illocutionary force.

Example

Request (Indirect): “It’s chilly in here.” (intended illocutionary
force: “Close the window.”)

Command (Indirect): “I wonder if you could pass me the salt.”
(intended illocutionary force: “Pass me the salt.”)

Statement (Indirect): “The trash is overflowing.” (intended illo‑
cutionary force: “Take out the trash.”)

Question (Indirect): “Do you have the time?” (intended illocu‑
tionary force: “Tell me the time.”)

In these examples, the speaker’s intention is conveyed indirectly, and
the listener is expected to infer the illocutionary force based on the
context and pragmatic cues

Implementation

% Python program

def classify_speech_act(utterance):
 # Direct speech acts
 direct_requests = ["please", "could you", "would
you"]
 direct_commands = ["shut", "close", "open"]
 direct_statements = ["I will", "It is", "The sky is"]
 direct_questions = ["what", "where", "when",
"who", "how"]

 # Check for direct speech acts
 if any(word in utterance.lower() for word in
direct_requests):
 print("Direct Request Detected")

 elif any(word in utterance.lower() for word in
direct_commands):
 print("Direct Command Detected")

 elif any(word in utterance.lower() for word in
direct_statements):
 print("Direct Statement Detected")

85DisCourse anD PragmatiC analysis

 elif any(word in utterance.lower() for word in
direct_questions):
 print("Direct Question Detected")

 else:
 # Check for indirect speech acts
 if "wonder" in utterance.lower():
 print("Indirect Request Detected")

 elif "if" in utterance.lower() and "could you"
in utterance.lower():
 print("Indirect Command Detected")

 elif "it's" in utterance.lower() or "isn't" in
utterance.lower():
 print("Indirect Statement Detected")

 elif "wonder" in utterance.lower():
 print("Indirect Question Detected")

 else:
 print("Speech Act Not Detected")

Example usage:

classify_speech_act("Please close the door.")
classify_speech_act("I wonder if you could pass the
salt.")
classify_speech_act("What is your name?")
classify_speech_act("The dishes aren't washing
themselves.")

% Output:

Direct Request Detected
Indirect Request Detected
Direct Question Detected
Speech Act Not Detected

4.10 Deixis and Deictic Expressions

Deixis [11] refers to words and phrases that show time, place, or situ‑
ation when someone is talking. It refers to words or phrases such as
“me,” “here,” etc., which are difficult to understand without additional

86 AI FOR NATURAL LANGUAGE PROCESSING

information.Deixis is a linguistic phenomenon that involves the use of
words or expressions whose interpretation relies heavily on the context
of the conversation, particularly the time, place, or situation in which
the communication is taking place. These words or phrases, known
as deictic expressions, contribute to the understanding of the message
by referring to elements that are not explicitly stated but are instead
inferred from the surrounding context. Deictic expressions, which con‑
vey meaning based on context, can be classified into three main types:

• Person Deixis: This refers to expressions that indicate the
participants in the communication, such as pronouns. Relates
to pronouns (e.g., “I,” “you”) whose meaning depends on the
participants in the conversation.

• Spatial Deixis: Spatial deictic expressions are those that
convey information about the location of entities in space.
Involves words like “here” and “there” that convey location,
relying on the physical context of the speaker and listener.

• Temporal Deixis: Temporal deictic expressions provide
information about the timing of events or actions. Refers to
words such as “now” and “tomorrow” that convey timing,
with meaning dependent on when the communication occurs.

Implementation

% Python program

import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag

Function to classify deictic expressions
def classify_deictic_expression(sentence):
 tokens = word_tokenize(sentence)
 tagged_tokens = pos_tag(tokens)

 for token, pos in tagged_tokens:
 if pos == "PRP": # Person deixis (pronouns)
 print(f"{token} is a person deictic
expression.")

87DisCourse anD PragmatiC analysis

 elif pos == "RB" and token.lower() in ['here',
'there']: # Spatial deixis (adverbs indicating
location)
 print(f"{token} is a spatial deictic
expression.")

 elif pos == "NN" and token.lower() in ['today',
'tomorrow', 'yesterday']: # Temporal deixis (nouns
indicating time)
 print(f"{token} is a temporal deictic
expression.")

Example usage:
sentence1 = "Meet me here."
sentence2 = "I wish you'd been here yesterday."
sentence3 = "I'll see you tomorrow."

print("Sentence 1:")
classify_deictic_expression(sentence1)

print("\nSentence 2:")
classify_deictic_expression(sentence2)

print("\nSentence 3:")
classify_deictic_expression(sentence3)

% Output:

Sentence 1:
me is a person deictic expression.
here is a spatial deictic expression.

Sentence 2:
I is a person deictic expression.
you is a person deictic expression.
here is a spatial deictic expression.
yesterday is a temporal deictic expression.

Sentence 3:
I is a person deictic expression.
you is a person deictic expression.
tomorrow is a temporal deictic expression.
% Python program

88 AI FOR NATURAL LANGUAGE PROCESSING

from nltk.sentiment import SentimentIntensityAnalyzer

def analyze_positive_negative_face(sentence):
 sia = SentimentIntensityAnalyzer()
 sentiment_scores = sia.polarity_scores(sentence)

 # Positive Face
 if sentiment_scores['compound'] >= 0.05:
 print("The statement conveys a positive
sentiment.")

 # Negative Face
 elif sentiment_scores['compound'] <= ‑0.05:
 print("The statement conveys a negative
sentiment.")

 # Neutral Face
 else:
 print("The sentiment of the statement is
neutral.")

Example Usage
user_input = "I appreciate your help with the
project."
analyze_positive_negative_face(user_input)

% Output:

The statement conveys a positive sentiment.

4.11 Positive and Negative Face in Pragmatics

In pragmatic analysis [12], positive face and negative face are con‑
cepts introduced by sociolinguist Erving Goffman and later devel‑
oped by politeness theorists, particularly Brown and Levinson. These
concepts are crucial in understanding how individuals manage their
social interactions through language. Positive face refers to the desire
for approval, liking, and a sense of being valued, while negative face
pertains to the desire for autonomy, freedom from imposition, and the
right to act without interference.

89DisCourse anD PragmatiC analysis

4.11.1 Positive Face

Positive face represents an individual’s need to be appreciated, liked,
and affirmed in their social interactions. It involves the desire for a
sense of belonging and positive regard from others. In natural lan‑
guage processing (NLP), understanding positive face is crucial for
developing socially intelligent systems that can generate responses that
promote a positive and supportive interaction with users. Politeness
strategies, such as using courteous language or expressing apprecia‑
tion, can contribute to a more positive user experience.

4.11.2 Negative Face

Negative face reflects an individual’s need for autonomy, inde‑
pendence, and the freedom to act without being imposed upon. It
involves the desire to have one’s actions and decisions respected and
not encroached upon by others. Recognizing negative face in NLP
is essential for developing systems that respect users’ autonomy and
preferences. Language models can be designed to offer choices, seek
permission, and use polite language to minimize the potential impo‑
sition on users.

Implementation

% Python program

from nltk.sentiment import SentimentIntensityAnalyzer

def analyze_positive_negative_face(sentence):
 sia = SentimentIntensityAnalyzer()
 sentiment_scores = sia.polarity_scores(sentence)

 # Positive Face
 if sentiment_scores['compound'] >= 0.05:
 print("The statement conveys a positive
sentiment.")

 # Negative Face
 elif sentiment_scores['compound'] <= ‑0.05:

90 AI FOR NATURAL LANGUAGE PROCESSING

 print("The statement conveys a negative
sentiment.")

 # Neutral Face
 else:
 print("The sentiment of the statement is
neutral.")

Example Usage
user_input = "I appreciate your help with the
project."
analyze_positive_negative_face(user_input)

% Output:

The statement conveys a positive sentiment.
% Python program

from nltk.sentiment import SentimentIntensityAnalyzer

def analyze_politeness(text):
 sia = SentimentIntensityAnalyzer()
 sentiment_scores = sia.polarity_scores(text)

 # Positive face: Higher positive sentiment
indicates a positive response
 positive_face = sentiment_scores['pos']

 # Negative face: Higher negative sentiment
indicates a negative response
 negative_face = sentiment_scores['neg']
 return positive_face, negative_face

Example usage
user_input = "Thank you for your assistance, but I
have some concerns about the product."

positive, negative = analyze_politeness(user_input)

print(f"Positive Face Score: {positive}")
print(f"Negative Face Score: {negative}")

91DisCourse anD PragmatiC analysis

% Output:

Positive Face Score: 0.137
Negative Face Score: 0.0
% Python program

import random
import time

def chatbot_response(user_input):
 # Greeting markers
 greeting_markers = ["Hello!", "Hi there!", "Hey!"]
 # Politeness markers
 politeness_markers = ["Certainly,", "Please,", "I
would be happy to,"]
 # Emphasis markers
 emphasis_markers = ["Absolutely!", "Indeed,",
"Certainly!"]

 # Randomly select a greeting marker
 greeting_marker = random.choice(greeting_markers)
 # Randomly select a politeness marker
 politeness_marker = random.choice(politeness_markers)
 # Randomly select an emphasis marker
 emphasis_marker = random.choice(emphasis_markers)

 # Check for specific input types and respond
accordingly
 user_input_lower = user_input.lower()

 # Handle greetings
 if "hello" in user_input_lower or "hi" in
user_input_lower:
 return f"{greeting_marker} How can I assist
you today?"

 # Handle polite requests
 if "please" in user_input_lower or "kindly" in
user_input_lower:
 return f"{politeness_marker} Thank you for
asking. How may I help you?"

92 AI FOR NATURAL LANGUAGE PROCESSING

 # Handle urgency and important requests
 if "urgent" in user_input_lower or "important" in
user_input_lower:
 return f"{emphasis_marker} I understand this
is urgent. Please provide more details for quicker
assistance."

 # Handle questions about time
 if "time" in user_input_lower:
 current_time = time.strftime("%I:%M %p")
 return f"The current time is {current_time}.
How else can I assist you?"

 # Handle general questions
 if "how are you" in user_input_lower or "how's it
going" in user_input_lower:
 return f"I'm doing great, thank you for asking!
How can I assist you today?"

 # Handle questions about the chatbot itself
 if "who are you" in user_input_lower or "what is
your name" in user_input_lower:
 return "I am your friendly assistant, here to
help you with anything you need!"

 # Handle random statements or fallback responses
 return "I'm not sure how to respond. Could you
please provide more context or ask a specific question?"

Example usage
while True:
 user_input = input("User: ")
 response = chatbot_response(user_input)
 print("Chatbot:", response)
 # Optionally, exit the loop if the user wants to
quit the conversation
 if user_input.lower() in ['exit', 'quit', 'bye']:
 print("Chatbot: Goodbye! Have a great day!")
 break

% Output:

User: Hi
Chatbot: Hey! How can I assist you today?
User: What is the date day after tomorrow?

93DisCourse anD PragmatiC analysis

Chatbot: I'm not sure how to respond. Could you please
provide more context or ask a specific question?
User: bye
Chatbot: I'm not sure how to respond. Could you please
provide more context or ask a specific question?
Chatbot: Goodbye! Have a great day!

4.12 Pragmatic Markers and Functions

Pragmatic markers [13], as linguistic cues, convey information about
a speaker’s attitude, intention, or discourse context. They are vital
for nuanced communication, guiding listeners to interpret mean‑
ing beyond literal words. In pragmatic analysis, understanding these
markers is crucial. In NLP, incorporating pragmatic markers is essen‑
tial for machines to generate contextually appropriate responses, rec‑
ognize speaker intentions, and engage in natural conversations. This
is particularly valuable in NLP applications like chatbots, enhancing
the overall quality of human‑machine interaction.

4.12.1 Functions of Pragmatic Markers

• Pragmatic markers serve to highlight and give importance to
specific details or expressions within a sentence. They play a
role in enhancing the politeness of language, aiding systems
in generating responses that are courteous and respectful.

• Pragmatic markers convey the speaker’s stance or assessment
of a situation, offering a glimpse into their perspective.

• They assist in arranging information in a sequential manner,
facilitating the organization of discourse.

• Pragmatic markers contribute to steering the conversation,
indicating when a speaker takes a turn or signaling pauses.

• They introduce contrasting ideas or acknowledge opposing
viewpoints, recognizing counterarguments.

• Pragmatic markers offer additional explanations or clarifica‑
tions to ensure better comprehension.

• Hedging: They express uncertainty or moderate statements to
convey a less assertive tone.

94 AI FOR NATURAL LANGUAGE PROCESSING

Implementation

% Python program

import random
import time

User's data
user_data = {}

Response markers
greeting_markers = ["Hello!", "Hi there!", "Hey!"]
politeness_markers = ["Certainly,", "Please,", "I
would be happy to,"]
emphasis_markers = ["Absolutely!", "Indeed,",
"Certainly!"]

Function to handle user name
def ask_for_name():
 return "I don't think we've met. What is your name?"

Function to greet the user
def greet_user(name):
 return f"Hello, {name}! How can I assist you today?"

Enhanced chatbot response function
def chatbot_response(user_input):
 global user_data
 greeting_marker = random.choice(greeting_markers)
 politeness_marker = random.choice(politeness_markers)
 emphasis_marker = random.choice(emphasis_markers)

 user_input_lower = user_input.lower()

 # Handle Name Input
 if 'name' in user_input_lower and user_data.
get("name") is None:
 user_name = input("Please enter your name: ")
 user_data["name"] = user_name
 return greet_user(user_name)

 if user_data.get("name"):
 # Use the name in conversations

95DisCourse anD PragmatiC analysis

 if "hello" in user_input_lower or "hi" in
user_input_lower:
 return greet_user(user_data["name"])

 # Handle greeting
 if "hello" in user_input_lower or "hi" in
user_input_lower:
 return f"{greeting_marker} How can I assist
you today?"

 # Handle polite requests
 if "please" in user_input_lower or "kindly" in
user_input_lower:
 return f"{politeness_marker} Thank you for
asking. How may I help you?"

 # Handle urgency or emphasis
 if "urgent" in user_input_lower or "important" in
user_input_lower:
 return f"{emphasis_marker} I understand this
is urgent. Please provide more details for quicker
assistance."

 # Handle general questions
 if "how are you" in user_input_lower or "how's it
going" in user_input_lower:
 return f"I'm doing great, thank you for asking!
How can I assist you today?"

 # Handle questions about the chatbot
 if "who are you" in user_input_lower or "what is
your name" in user_input_lower:
 return "I am your friendly assistant, here to
help you with anything you need!"

 # Handle current time request
 if "time" in user_input_lower:
 current_time = time.strftime("%I:%M %p")
 return f"The current time is {current_time}.
How else can I assist you?"

 # Handle responses for "ok" or "bye"
 if "ok" in user_input_lower:

96 AI FOR NATURAL LANGUAGE PROCESSING

 return "Is there anything else you'd like
assistance with?"

 if "bye" in user_input_lower or "quit" in user_
input_lower or "exit" in user_input_lower:
 return "Goodbye! Have a great day!"

 # Handle vague responses or requests
 if "help" in user_input_lower or "assist" in
user_input_lower:
 return "How can I assist you? Could you please
clarify your request?"

 # Random small talk
 if "joke" in user_input_lower or "tell me a joke"
in user_input_lower:
 return "Why don't skeletons fight each other?
They don't have the guts!"

 # Fallback response for unclear inputs
 return "I'm not sure how to respond. Could you
please provide more context or ask a specific question?"

Example usage
while True:
 user_input = input("User: ")
 response = chatbot_response(user_input)
 print("Chatbot:", response)

 # Optionally, exit the loop if the user wants to quit
 if user_input.lower() in ['exit', 'quit', 'bye']:
 break

% Output:

User: Hi
Chatbot: Hey! How can I assist you today?
User: who are you
Chatbot: I am your friendly assistant, here to help
you with anything you need!
User: how are you
Chatbot: I'm doing great, thank you for asking! How can
I assist you today?
User: what is the time now
Chatbot: The current time is 07:01 PM. How else can I
assist you?

97DisCourse anD PragmatiC analysis

User: ok
Chatbot: Is there anything else you'd like assistance
with?
User: bye
Chatbot: Goodbye! Have a great day!

4.13 Summary

This chapter explores discourse and pragmatic analysis, which go
beyond individual words and sentences to understand how language
functions in communication. It begins with the concept of discourse,
focusing on cohesion and cohesive devices, which ensure logical con‑
nections between sentences. The structure of discourse is examined
through elements like adjacency pairs (turn‑taking in conversations)
and the ethnography of speaking, which studies cultural and social
influences on communication. This chapter also covers implicature
and the cooperative principle, which explain how speakers convey
meaning beyond literal words. Concepts like schema and script theory
provide insights into how prior knowledge influences language inter‑
pretation. Conversational analysis is discussed to highlight patterns
in dialogues, while context and its types (endophora and exophora)
are explored to show how meaning depends on situational references.

A key focus is on speech acts, distinguishing between direct and
indirect speech acts, and the role of deixis and deictic expressions in
pointing to time, place, and people. This chapter concludes with an
analysis of pragmatic markers, which help in structuring conversa‑
tions, and the concepts of positive and negative face, which relate
to politeness and social interaction in communication. This chapter
provides essential insights into how meaning is constructed beyond
individual words, making it a crucial aspect of NLP and linguistic
studies.

References
 1. T. Arnold and H. J. A. Fuller, “In search of the user’s language: Natural

language processing, computational ethnography, and error‑tolerant
interface design,” in Advances in usability, user experience and assistive
technology: Proceedings of the AHFE 2018 international conferences
on usability & user experience and human factors and assistive technol‑
ogy, held on July 21‑‑25, 2018, in Loews Sapphire Falls Resort at, 2019,
pp. 36–43.

98 AI FOR NATURAL LANGUAGE PROCESSING

 2. J. C. Sedivy, “Implicature during real time conversation: A view from
language processing research,” Philos. compass, vol. 2, no. 3, pp. 475–496,
2007.

 3. J. Thomas, “Cooperative principle,” Concise Encycl. Philos. Lang. Peter
V. Lamarque, 1997 Philos. Lang., vol. 1, p. 393, 1997.

 4. H. I. Joseph, “Narrative Schema as World Knowledge for Coreference
Resolution,” 2012.

 5. Upreti, “A Comparative Analysis of NLP Algorithms For Implementing
AI Conversational Assistants: Comparative Analysis of NLP Algorithms
for NLI.” 2023.

 6. M. Safdar, M. J. I. Khan, and P. Hussain, “A review different approach
for anaphora resolution”.

 7. X. Yu, H. Zhang, Y. Song, C. Zhang, K. Xu, and D. Yu, “Exophoric
Pronoun Resolution in Dialogues with Topic Regularization,” arXiv
Prepr. arXiv2109.04787, 2021.

 8. J. Hirschberg and C. D. Manning, “Advances in natural language pro‑
cessing,” Science (80‑.). vol. 349, no. 6245, pp. 261–266, 2015.

 9. C. R. Perrault and J. Allen, “Speech acts as a basis for understanding dia‑
logue coherence,” in Theoretical issues in natural language processing‑2,
1978.

 10. N. Asher and A. Lascarides, “Indirect speech acts,” Synthese, vol. 128,
pp. 183–228, 2001.

 11. Dylgjeri and L. Kazazi, “Deixis in modern linguistics and outside,”
Acad. J. Interdiscip. Stud., vol. 2, no. 4, pp. 87–96, 2013.

 12. H. Jucker, “Positive and negative face as descriptive categories in the his‑
tory of English,” J. Hist. Pragmat., vol. 12, no. 1–2, pp. 178–197, 2011.

 13. K. Aijmer and A.‑M. Simon‑Vandenbergen, “Pragmatic markers,”
Discursive Pragmat., vol. 8, pp. 223–247, 2011.

DOI: 10.1201/9781003425328-5 99

5
artIfIcIaL InteLLIgence

In nLP

In NLP, artificial intelligence (AI) refers to the application of sophis‑
ticated computational methods that allow machines to comprehend,
interpret, and produce human language. NLP is a branch of AI that
focuses on the way computers interact with natural language, includ‑
ing text and speech.

5.1 Machine Learning

Within the field of AI, machine learning focuses on creating models
and algorithms that let computers learn and make judgments or pre‑
dictions without explicit programming. Algorithms are trained using
data so they can recognize patterns, forecast outcomes, and gradually
get better at what they do. Numerous fields, including image identifi‑
cation, NLP, recommendation systems, and even more, use machine
learning to improve computer system performance and automate
operations.

5.1.1 Supervised Machine Learning

Using a labeled dataset, supervised learning entails training a model
with input data (features) combined with matching labels or intended
outputs. Labeled data in NLP could include phrases or documents
that have sentiment tags, named entities, categories, or other prede‑
termined annotations. Labeled datasets, in which the data being input
(text) is linked to matching labels or categories, are used to train AI
models. This method is frequently applied to applications such as text
categorization, named entity recognition, and sentiment analysis.

https://doi.org/10.1201/9781003425328-5

100 AI FOR NATURAL LANGUAGE PROCESSING

Applications in NLP:

• Sentiment Analysis [1]: Using labeled examples to categorize
text as neutral, negative, or positive.

• Named Entity Recognition (NER) [2]: Recognizing named
entities, places, or organizations within a text.

• Text Classification [3]: Categorizing documents into pre‑
defined classes or topics.

5.1.2 Unsupervised Machine Learning

When a model is trained on an unlabeled dataset, unsupervised learn‑
ing occurs when the algorithm finds patterns, structures, or corre‑
lations in the data without direct supervision. Algorithms identify
structures and patterns in data without the need for labeling. Word
embeddings, topic modeling, and clustering are a few instances of
unsupervised learning used in NLP.

Applications in NLP:

• Topic Modeling [4]: Finding underlying themes in a set of
papers without established classifications.

• Clustering [5]: Grouping similar documents or sentences
together based on their content.

• Word Embedding [6]: Creating dense vector representations
of words based on contextual information.

5.2 Machine Learning on Natural Language Sentences

Enabling machines to comprehend, analyze, and produce text that
is similar to that of a person requires machine learning on natural
language phrases. This helps with applications that range from sen‑
timent assessment and language translation to chatbots and virtual
assistants. Utilizing models and algorithms to process and compre‑
hend human language is known as machine learning on natural lan‑
guage sentences. The models are able to generalize and predict new,
unseen phrases because they have learned patterns and relationships
in the data. The following tasks apply machine learning to natural
language sentences:

101artifiCial intelligenCe in nlP

 1. Text Classification: Giving text labels or predetermined
categories.

 2. Named Entity Recognition: Recognizing entities in a text,
including names, places, or organizations.

 3. Part‑of‑Speech Tagging: Giving each word in a sentence a
grammatical label (such as noun, verb, or adjective).

 4. Machine Translation: Converting text between languages.
 5. Text Summarization [7]: Producing succinct and logical

synopses of lengthy texts.
 6. Question Answering [8]: Comprehending inquiries and

offering pertinent responses.
 7. Intent Recognition: Determining the intention or goal of

user input.
 8. Text Generation: The goal is to use learnt patterns to pro‑

duce text that appears human.
 9. Word Embeddings: Using dense vectors to represent words

in a continuous vector space is known as word embedding.
 10. Sentiment Analysis [9]: identifying if a statement expresses a

good, negative, or neutral sentiment).

Implementation

% Python program

import nltk

from nltk.sentiment import SentimentIntensityAnalyzer

def analyze_sentiment(sentence):
 # Initialize SentimentIntensityAnalyzer
 sia = SentimentIntensityAnalyzer()

 # Get sentiment scores
 sentiment_scores = sia.polarity_scores(sentence)

 # Determine sentiment based on the compound score
 if sentiment_scores['compound'] >= 0.05:
 return 'Positive'
 elif sentiment_scores['compound'] < ‑0.05:
 return 'Negative'

102 AI FOR NATURAL LANGUAGE PROCESSING

 else:
 return 'Neutral'

Example sentences for sentiment analysis
sentences = [
 "I love this product! It's amazing.",
 "The service was terrible, and I'm very
disappointed.",
 "The weather is nice today.",
 "The movie was neither good nor bad."
]

Analyze sentiment for each sentence
for sentence in sentences:
 sentiment = analyze_sentiment(sentence)
 print(f"Sentence: {sentence}\nSentiment:
{sentiment}\n")

% Output:

Sentence: I love this product! It's amazing.
Sentiment: Positive

Sentence: The service was terrible, and I'm very
disappointed.
Sentiment: Negative

Sentence: The weather is nice today.
Sentiment: Positive

Sentence: The movie was neither good nor bad.
Sentiment: Negative

5.3 Hybrid Machine Learning Systems in NLP

In NLP, hybrid machine learning systems are those that combine
several machine learning methods or approaches to capitalize on
their unique advantages and get around their drawbacks. In hybrid
systems, supervised and unsupervised learning components are com‑
bined, or rule‑based systems are combined with statistical or deep
learning models. The objective is to improve the resilience, flexibility,
and performance of NLP applications. Typical forms of hybrid NLP
machine learning systems:

103artifiCial intelligenCe in nlP

Transfer Learning: Using a smaller, task‑specific dataset to refine
a model for a particular NLP task after it has been trained on a larger,
general‑purpose dataset is known as transfer learning.

Application: Large volumes of text data are used to train pre‑trained
models including BERT and GPT, which can then be optimized for
tasks like named entity recognition, sentiment analysis, and question
answering.

Rule‑Based Systems Combined with ML Models: To capture
intricate linguistic patterns and relationships, hybrid systems may
combine machine learning models with rule‑based systems that
employ pre‑established linguistic rules.

Application: Combining rule‑based named entity recognition with
machine learning models for more accurate and context‑aware entity
recognition.

Semi‑Supervised Learning: For training, semi‑supervised learn‑
ing combines labeled and unlabeled data. A greater pool of unlabeled
data is added to a smaller amount of labeled data.

Application: This approach is useful when labeled data is scarce. For
instance, combining a greater volume of unlabeled data with a small
classified sample for sentiment analysis.

Ensemble Learning: Compared to individual models, ensemble
approaches integrate several machine learning models to get a forecast
that is more reliable and accurate.

Application: Developing a collection of several models, such as inte‑
grating neural networks, decision trees, and support vector machines,
to enhance overall performance in tasks like sentiment analysis or text
classification.

Hybrid Neural Networks: To capitalize on their complementing
qualities, various neural network design types are combined into a
single model.

Application: Combining Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) to identify local and sequen‑
tial patterns in information in text.

Symbolic and Subsymbolic Integration: Integrating symbolic
reasoning with subsymbolic machine learning methods to benefit
from the interpretability of rule‑based systems and the learning capa‑
bilities of statistical models.

104 AI FOR NATURAL LANGUAGE PROCESSING

Application: Combining rule‑based syntactic parsing with machine
learning models for enhanced parsing accuracy and linguistic
understanding.

Implementation
Algorithm

 1. Input: Take an input text for analysis.
 2. Rule‑Based Named Entity Recognition:
 a. Tokenize the input text into sentences.
 b. Tokenize each sentence into words.
 c. Part‑of‑speech tag each word in the sentences.
 d. Apply named entity recognition using the NLTK’s ne_

chunk function on the part‑of‑speech tagged sentences.
 e. Extract named entities from the named entity recognition

results.
 3. Machine Learning Sentiment Analysis:
 a. Use the NLTK’s Sentiment Intensity Analyzer to analyze

the sentiment of the input text.
 b. Determine the sentiment type using the compound score:

positive, negative, or neutral.
 13. Output:

Display the identified named entities.
Display the determined sentiment of the input text

% Python program

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.corpus import stopwords

def rule_based_ner(text):
 # Sentence tokenization
 sentences = sent_tokenize(text)

 # Tokenization of each sentence
 tokenized_sentences = [word_tokenize(sentence) for
sentence in sentences]

105artifiCial intelligenCe in nlP

 # Part‑of‑speech tagging for each sentence
 tagged_sentences = [pos_tag(sentence) for sentence
in tokenized_sentences]

 named_entities = []

 # Named Entity Recognition using ne_chunk
 for tagged_sentence in tagged_sentences:
 tree = ne_chunk(tagged_sentence, binary=True)
 for subtree in tree:
 if isinstance(subtree, nltk.Tree) and
subtree.label() == 'NE':
 # Joining the words in the entity
 entity = ' '.join([word for word, _ in
subtree])
 named_entities.append(entity)

 return named_entities

def machine_learning_sentiment(text):
 # Sentiment Analysis using SentimentIntensityAnalyzer
 sia = SentimentIntensityAnalyzer()
 sentiment_scores = sia.polarity_scores(text)

 if sentiment_scores['compound'] > 0.05:
 return 'Positive'
 elif sentiment_scores['compound'] < ‑0.05:
 return 'Negative'
 else:
 return 'Neutral'

def hybrid_nlp_system(text):
 # Rule‑based Named Entity Recognition
 named_entities = rule_based_ner(text)
 print("Named Entities:", named_entities)

 # Machine Learning Sentiment Analysis
 sentiment = machine_learning_sentiment(text)
 print("Sentiment:", sentiment)

Example test text
example_text = "Apple Inc. is planning to launch a new
product next month. The company's stocks have been
rising recently."

106 AI FOR NATURAL LANGUAGE PROCESSING

Apply the hybrid NLP system to the example text
hybrid_nlp_system(example_text)

% Output:

Named Entities: ['Apple Inc.']
Sentiment: Neutral

5.4 Introduction to Deep Learning in NLP

NLP has undergone a revolution thanks to deep learning, a kind of
machine learning that makes it possible to generate and understand
language in more complex and efficient ways. The way NLP tasks
are tackled has changed dramatically as a result of deep learning.
Significant progress has been made in language production and inter‑
pretation, as well as a variety of other NLP applications, thanks to the
capacity to automatically extract intricate trends and representations
from data.

Handcrafted rules and superficial linguistic elements were fre‑
quently used in traditional NLP techniques. However, deep learning
enables models to automatically extract complex patterns and seman‑
tic correlations from raw data to create hierarchical representations of
language.

Neural Networks in NLP:
Neural network topologies are used in deep learning to model intri‑

cate relationships in data. RNNs, transformer topologies, and Long
Short‑Term Memory networks (LSTMs) are frequently utilized in
NLP.

Word Embeddings:
Word embeddings are dense vector representations of words in

continuous vector spaces that were first introduced by deep learning.
Semantic links between words have been captured in large part by
methods like Word2Vec and GloVe.

Sequence Modeling:
Sequence modeling is a strong suit for deep learning models, espe‑

cially those with recurrent and attention‑based architectures. They are
useful for tasks like text synthesis, summarization, and machine trans‑
lation because they can comprehend and produce word sequences.

107artifiCial intelligenCe in nlP

Transformers and Attention Mechanism:
A key component of NLP is the transformer architecture, which was

first presented by Vaswani et al. It makes use of self‑attention processes,
which enable the model to assess the relative relevance of several phrases
in a sequence and successfully capture long‑range dependencies.

Pre‑trained Models and Transfer Learning:
Pre‑trained language models like Bidirectional Encoder

Representations from Transformers (BERT) and Generative Pre_
trained Transformer (GPT) have become popular in deep learning.
Transfer learning is made possible by these models’ ability to be adjusted
for particular NLP tasks after being trained on enormous datasets.

Natural Language Understanding:
Natural language comprehension challenges have greatly improved

because to deep learning. It makes it possible for machines to under‑
stand the subtleties of language through semantic role labeling, named
entity identification, and sentiment analysis.

Contextual Representations:
In contrast to conventional techniques, contextual information can

be captured by deep learning models. As demonstrated by models
such as Embeddings from Language Models (ELMo) contextual
word embeddings offer representations that change according to the
word’s context inside a phrase.

Applications in Dialogue Systems and Chatbots:
Chatbots and intelligent dialogue systems have been made possible

thanks in large part to deep learning. Models are able to comprehend
user intent, produce responses that are pertinent to the situation, and
have more organic interactions.

Challenges and Advances:
Considering the achievements, there are still issues with interpret‑

ability, explainability, and the requirement for a lot of labeled data. In
order to overcome these obstacles and improve the potential of deep
learning in NLP, research is still being conducted.

Implementation

% Python program

import tensorflow as tf
import numpy as np

108 AI FOR NATURAL LANGUAGE PROCESSING

from tensorflow.keras.preprocessing.text import
Tokenizer
from tensorflow.keras.preprocessing.sequence import
pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM,
Dense

Example sentences and Labels for sentiment analysis
sentences = ["I love this product!", "The movie was
disappointing.", "The weather is nice today."]
labels = np.array([1, 0, 1]) # Labels: 1 for
positive, 0 for negative sentiment

Tokenize the sentences
tokenizer = Tokenizer(oov_token="<OOV>") # oov_token
is used for out‑of‑vocabulary words
tokenizer.fit_on_texts(sentences) # Build the word
index based on the sentences
word_index = tokenizer.word_index # Get the word
index dictionary

Convert sentences to sequences (tokenizing the
sentences)
sequences = tokenizer.texts_to_sequences(sentences)

Pad sequences to ensure they have the same length
(pad shorter sequences and truncate longer ones)
padded_sequences = pad_sequences(sequences, maxlen=10,
padding='post', truncating='post')

Build a simple LSTM model for sentiment analysis
model = Sequential([
 Embedding(len(word_index) + 1, 16, input_
length=10), # Embedding layer
 LSTM(64), # LSTM layer with 64 units
 Dense(1, activation='sigmoid') # Output layer
with sigmoid activation (binary classification)
])

Compile the model
model.compile(optimizer='adam', loss='binary_
crossentropy', metrics=['accuracy'])

109artifiCial intelligenCe in nlP

Train the model

model.fit(padded_sequences, labels, epochs=10)
Make predictions on new data
new_sentences = ["I feel great about this!", "It's a
terrible experience."]
new_sequences = tokenizer.texts_to_sequences(new_
sentences) # Convert new sentences to sequences
new_padded_sequences = pad_sequences(new_sequences,
maxlen=10, padding='post', truncating='post') # Pad
the sequences

Get predictions
predictions = model.predict(new_padded_sequences)

Print the predictions
for i, sentence in enumerate(new_sentences):
 sentiment = "Positive" if predictions[i] > 0.5
else "Negative"
 print(f"Sentence: {sentence}\nSentiment:
{sentiment}\n")

% Output:

Epoch 1/10
1/1____________________ 3s 3s/step - accuracy: 0.6667 - loss: 0.6925
Epoch 2/10
1/1____________________ 0s 57ms/step - accuracy: 0.6667 - loss: 0.6896
Epoch 3/10
1/1____________________ 0s 51ms/step - accuracy: 0.6667 - loss: 0.6867
Epoch 4/10
1/1____________________ 0s 139ms/step - accuracy: 0.6667 - loss: 0.6838
Epoch 5/10
1/1____________________ 0s 59ms/step - accuracy: 0.6667 - loss: 0.6808
Epoch 6/10
1/1____________________ 0s 50ms/step - accuracy: 0.6667 - loss: 0.6776
Epoch 7/10
1/1____________________ 0s 52ms/step - accuracy: 0.6667 - loss: 0.6743
Epoch 8/10
1/1____________________ 0s 58ms/step - accuracy: 0.6667 - loss: 0.6707
Epoch 9/10
1/1____________________ 0s 59ms/step - accuracy: 0.6667 - loss: 0.6669
Epoch 10/10
1/1____________________ 0s 61ms/step - accuracy: 0.6667 - loss: 0.6629
1/1____________________ 0s 201ms/step
Sentence: I feel great about this!
Sentiment: Positive

Sentence: It's a terrible experience.
Sentiment: Positive

110 AI FOR NATURAL LANGUAGE PROCESSING

5.5 Applications of NLP

There are numerous uses for NLP in a variety of fields. Here are some
common and notable applications:

• Sentiment Analysis: Textual analysis of attitudes and opin‑
ions, frequently utilized for social media monitoring, product
evaluations, and customer feedback.

• Text Summarization: Creating succinct and logical summa‑
ries of longer texts is helpful for rapidly comprehending the
key ideas in papers, articles, or conversations.

• Language Translation: Translating texts between languages,
promoting interlanguage dialogue, and removing linguistic
obstacles.

• Speech Recognition: Transcribing audible words into writ‑
ten form for usage in voice assistants, voice‑activated gadgets,
and transcription services.

• Chatbots and Virtual Assistants: Creating interactive con‑
versational agents that can understand and respond to user
queries, providing customer support or information retrieval.

• Text Classification: Categorizing documents or text into
predefined classes, such as spam detection, topic classifica‑
tion, and sentiment categorization.

• Text Generation [10]: Generating human‑like text, which
can be used for content creation, creative writing, and even in
the development of automated storytelling.

• Spell and Grammar Checking [11]: Correcting spelling and
grammar mistakes in text, improving the quality and read‑
ability of written content.

5.5.1 Sentiment Analysis

One important use of NLP is sentiment analysis, which analyzes and
ascertains the emotional tone conveyed in a text by means of algo‑
rithms. It seeks to determine if the text’s sentiment is neutral, nega‑
tive, or positive. This technology is frequently used to comprehend
social media material, customer feedback, and public opinion. It gives
organizations, marketers, and decision‑makers important insights to
assess the general sentiment and react appropriately.

111artifiCial intelligenCe in nlP

Implementation
Algorithm

 1. Import Libraries: Import the necessary libraries, such as nltk
and the SentimentIntensityAnalyzer class.

 2. Initialize Sentiment Intensity Analyzer: Create an instance
of the SentimentIntensityAnalyzer.

 3. Analyze Sentiment: To obtain sentiment ratings (positive,
negative, neutral, and complex) for a given text, use the polar‑
ity_scores method.

 4. Interpret Results: Interpret the compound score to classify
the sentiment.

% Python program

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer

Preprocess the text
def preprocess_text(text):
 # Tokenize the text
 words = word_tokenize(text)

 # Remove stopwords
 stop_words = set(stopwords.words('english'))

 # Filter words: keep only alphanumeric words that
are not stopwords
 filtered_words = [word.lower() for word in words
if word.isalnum() and word.lower() not in stop_words]

 # Join the filtered words back into a string
 preprocessed_text = ' '.join(filtered_words)

 return preprocessed_text

Analyze sentiment of the text
def analyze_sentiment(text):
 # Preprocess the text
 preprocessed_text = preprocess_text(text)

112 AI FOR NATURAL LANGUAGE PROCESSING

 # Initialize sentiment analyzer
 sia = SentimentIntensityAnalyzer()

 # Get sentiment scores
 sentiment_scores = sia.polarity_scores
(preprocessed_text)

 # Classify sentiment based on the compound score
 if sentiment_scores['compound'] >= 0.05:
 sentiment = 'Positive'
 elif sentiment_scores['compound'] <= ‑0.05:
 sentiment = 'Negative'
 else:
 sentiment = 'Neutral'

 return sentiment

Example usage
product_review = "I absolutely love this product! It's
amazing."
sentiment_result = analyze_sentiment(product_review)
print(product_review)
print(f"Sentiment: {sentiment_result}")

% Output:

I absolutely love this product! It's amazing.
Sentiment: Positive

5.5.2 Prediction of Next Word

The prediction of the next word is an application of NLP that involves
using algorithms to predict the most likely word that would follow a given
sequence of words in a sentence or text [12–15]. This application typically
relies on language models, such as recurrent neural networks (RNNs) or
transformer models like GPT. By training on large datasets, these models
learn the patterns and relationships between words, allowing them to
make intelligent predictions about the next word based on context. This
technology is commonly used in autocomplete suggestions, text comple‑
tion, and predictive typing applications to enhance user experience and
assist in generating coherent and contextually appropriate text.

113artifiCial intelligenCe in nlP

Implementation

% Python program

class NextWordPredictor:

 def __init__(self, corpus):
 # Initialize with the given corpus
 self.corpus = corpus
 # Initialize the word frequency dictionary
 self.word_frequency = {}
 # Build the word frequency table
 self.build_word_frequency()

 def build_word_frequency(self):
 # Build word frequency based on the corpus
 for sentence in self.corpus:
 words = sentence.split()
 for i in range(len(words) ‑ 1): # Loop
through words except the last one
 current_word = words[i]
 next_word = words[i + 1]
 if current_word not in self.
word_frequency:
 self.word_frequency[current_word]
= {}
 if next_word not in self.word_frequency
[current_word]:
 self.word_frequency[current_word]
[next_word] = 1
 else:
 self.word_frequency[current_word]
[next_word] += 1

 def predict_next_word(self, current_word):
 # Predict the next word given the current word
 if current_word in self.word_frequency:
 next_words = self.
word_frequency[current_word]
 # Predict the next word by finding the
most frequent one
 predicted_word = max(next_words, key=next_
words.get)

114 AI FOR NATURAL LANGUAGE PROCESSING

 return predicted_word
 else:
 return None

Example Usage
corpus = [
 "Natural language processing is a subfield of
artificial intelligence.",
 "It focuses on the interaction between computers
and humans using natural language.",
 "NLP applications include machine translation,
sentiment analysis, and speech recognition."
]

predictor = NextWordPredictor(corpus)

input_word = "language"
predicted_next_word = predictor.predict_next_word
(input_word)

if predicted_next_word:
 print(f"The predicted next word after '{input_
word}' is '{predicted_next_word}'.")
else:
 print(f"No prediction available for the word
'{input_word}'.")

% Output:

The predicted next word after 'language' is
'processing'.

5.6 Summary

This chapter explores the role of AI in NLP, highlighting how machine
learning and deep learning techniques enhance language understanding
and processing. It begins by discussing the integration of AI in NLP,
followed by an overview of Supervised and Unsupervised Machine
Learning techniques, which enable automated text classification, sen‑
timent analysis, and language modeling. Hybrid ML systems, which
combine multiple learning approaches for improved NLP performance,

115artifiCial intelligenCe in nlP

are also introduced. This chapter further examines deep learning for
NLP, covering its applications in handling complex linguistic tasks
such as next‑word prediction, sentiment analysis, and information
extraction. It also explores real‑world case studies, including Language
Understanding Intelligent Service (LUIS) for natural language com‑
prehension. Additionally, it discusses advanced NLP applications such
as text summarization, text‑to‑speech conversion, and chatbots, which
have revolutionized human‑computer interactions. Overall, this chap‑
ter provides insights into how AI‑driven approaches are shaping the
future of NLP, enabling machines to process, analyze, and generate
human language with greater accuracy and efficiency.

References
 1. M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment

analysis methods, applications, and challenges,” Artif. Intell. Rev., vol.
55, no. 7, pp. 5731–5780, 2022.

 2. J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named
entity recognition,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1,
pp. 50–70, 2020.

 3. K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,
and D. Brown, “Text classification algorithms: A survey,” Information,
vol. 10, no. 4, p. 150, 2019.

 4. H. Zhao, D. Phung, V. Huynh, Y. Jin, L. Du, and W. Buntine,
“Topic modelling meets deep neural networks: A survey,” arXiv Prepr.
arXiv2103.00498, 2021.

 5. A. Petukhova, J. P. Matos‑Carvalho, and N. Fachada, “Text clustering
with large language model embeddings,” arXiv Prepr. arXiv2403.15112,
2024.

 6. S. J. Johnson, M. R. Murty, and I. Navakanth, “A detailed review on
word embedding techniques with emphasis on word2vec,” Multimed.
Tools Appl., vol. 83, no. 13, pp. 37979–38007, 2024.

 7. W. S. El‑Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed,
“Automatic text summarization: A comprehensive survey,” Expert Syst.
Appl., vol. 165, p. 113679, 2021.

 8. A. M. N. Allam and M. H. Haggag, “The question answering systems:
A survey,” Int. J. Res. Rev. Inf. Sci., vol. 2, no. 3, p. 66, 2012.

 9. A. Rajput, “Natural language processing, sentiment analysis, and clinical
analytics,” in M. D. Lytras and A. Sarirete (eds.) Innovation in Health
Informatics, Elsevier, Amsterdam, Netherlands, 2020, pp. 79–97.

 10. T. Iqbal and S. Qureshi, “The survey: Text generation models in deep
learning,” J. King Saud Univ. Inf. Sci., vol. 34, no. 6, pp. 2515–2528,
2022.

116 AI FOR NATURAL LANGUAGE PROCESSING

 11. A. Fahda and A. Purwarianti, “A statistical and rule‑based spelling and
grammar checker for Indonesian text,” in 2017 International Conference
on Data and Software Engineering (ICODSE), Palembang, Indonesia,
2017, pp. 1–6.

 12. J. Stremmel and A. Singh, “Pretraining federated text models for
next word prediction,” in Advances in Information and Communication:
Proceedings of the 2021 Future of Information and Communication
Conference (FICC), Vancouver, Canada, Volume 2, 2021, pp. 477–488.

 13. R. Sharma, N. Goel, N. Aggarwal, P. Kaur, and C. Prakash, “Next
word prediction in hindi using deep learning techniques,” in 2019
International conference on data science and engineering (ICDSE), Patana,
India, 2019, pp. 55–60.

 14. M. Soam and S. Thakur, “Next word prediction using deep learning:
A comparative study,” in 2022 12th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), Noida, India, 2022,
pp. 653–658.

 15. A. Rianti, S. Widodo, A. D. Ayuningtyas, and F. B. Hermawan,
“Next word prediction using lstm,” J. Inf. Technol. Its Util., vol. 5, no. 1,
p. 432033, 2022.

117

Index

adjacency pairs 65
ambiguity 2
anaphoric context 80
annotated corpora 4
antonymy 54
artificial intelligence (AI) 1
artificial intelligence in NLP 99

bag of words 15
bottom‑up parsing 37
British National Corpus (BNC) 4
Byte Pair Encoding (BPE) 3

cataphoric context 81
Chain Rule 23
clustering 100
Cocke‑Kasami‑Younger (CKY)

parsing 40
Conditional Random Field

(CRF) 33
CoNLL datasets 4
constituency parsing 6
context free grammar (CFG) 36

contextual representations 107
conversational analysis 75
cooperative principle 69
coreference resolution 7
corpora 4
corpus linguistics 1

deep learning 106
deictic expressions 85
deixis 85
deixis resolution 8
dependency parsing 6
derivational morphology 6
dialogue systems 69
dictionary‑based WSD 59
direct speech act 83
discourse context 80
discourse structure 65

Earley parsing 38
ensemble learning 103
ethnography of speaking 68
exophoric context 81

118 inDex

finite state automaton (FSA) 18
finite state transducer (FST) 20

GloVe 3
grammatical structure 6

hedging 93
Hidden Markov Model (HMM) 32
history of NLP 1
homonymy 52
hybrid machine learning systems 102
hybrid neural networks 103
hyponymy 52

implicature 69
indexing 61
indirect speech act 83
inflectional morphology 5
information extraction 45
information retrieval 61

knowledge representation 1

language modeling 22
lemmatization 11
Lesk algorithm 59
lexemes 51
lexical analysis 5
lexical semantics 50
lexicon 5

machine learning on natural
language sentences 100

machine translation 1
machine translation phase 1
morphological analysis 5

named entity recognition (NER) 3
natural language generation

(NLG) 2
natural language processing

(NLP) 1

natural language understanding
(NLU) 1

negative face 89
n‑grams language model 22

parsing 6
part‑of‑speech (POS) tagging 27
phases of NLP 5
polysemy 53
positive face 89
pragmatic analysis 8
pragmatic markers 93
Probabilistic Context‑Free

Grammar (PCFG) 41

query processing 61

ranking 61
recurrent neural networks

(RNNs) 103
regular expression (RE) 17
relation extraction 46
rule‑based systems 103

schema‑script 72
semantic analysis 6
semantic grammar 49
semantic matching 61
semi‑supervised learning 103
SentencePiece 3
sentiment analysis 110
sequence labeling 31
speech acts 83
speech recognition 110
spell and grammar checking 110
stochastic POS tagging 29
stop words 31
structural ambiguity 3
supervised learning 99
symbolic and subsymbolic

integration 103
symbolic reasoning 103

119inDex

synonymy 54
syntactic parsing 4
syntax analysis 5

Term Frequency‑Inverse Document
Frequency (TF‑IDF) 43

text classification 100
text generation 101
text preprocessing 8
text summarization 101, 110
token 3
tokenization 14
top‑down parsing 37

topic modeling 100
transfer learning 103
transformer architecture 107

unsupervised learning 100

Viterbi algorithm 32

word embeddings 101
WordNet 55
Word Sense Disambiguation 7
word senses 51
word similarity 56

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Authors
	Chapter 1 Introduction and Word-Level Analysis
	1.1 History of NLP
	1.2 Generic NLP System
	1.3 Ambiguity and Challenges
	1.4 Words
	1.5 Corpora
	1.6 Phases of NLP
	1.6.1 Morphological/Lexical Analysis
	1.6.2 Syntax Analysis or Parsing
	1.6.3 Semantic Analysis
	1.6.4 Discourse Integration
	1.6.5 Pragmatic Analysis

	1.7 Basic Concepts of Text Preprocessing
	1.7.1 Stemming
	1.7.2 Lemmatization
	1.7.3 Normalization
	1.7.4 Tokenization
	1.7.5 Bag of Words
	1.7.6 Regular Expression
	1.7.7 Finite-State Automaton
	1.7.8 Finite-State Transducer (FST)
	1.7.9 N-Gram Language Model

	1.8 Summary
	References

	Chapter 2 Syntactic Analysis
	2.1 Parts of Speech Tagging
	2.1.1 Rule-Based Tagging
	2.1.2 Stochastic POS Tagging

	2.2 Stop Words
	2.3 Sequence Labeling
	2.3.1 Hidden Markov Model
	2.3.2 The Conditional Random Field

	2.4 Context-Free Grammar (CFG)
	2.5 Parsing
	2.5.1 Types of Parsing
	2.5.2 Earley Parsing
	2.5.3 Cocke-Kasami-Younger Parsing

	2.6 Probabilistic Context-Free Grammar
	2.7 Term Frequency and Inverse Document Frequency
	2.8 Information Extraction
	2.9 Relation Extraction
	2.10 Summary
	References

	Chapter 3 Semantic Analysis
	3.1 Semantic Grammar
	3.2 Lexical Semantics
	3.3 Lexemes
	3.4 Word Senses
	3.4.1 Hyponymy
	3.4.2 Homonymy
	3.4.3 Polysemy
	3.4.4 Synonymy
	3.4.5 Antonymy

	3.5 Wordnet
	3.6 Word Similarity
	3.7 Word Sense Disambiguation
	3.7.1 Dictionary Based Approach of WSD

	3.8 Information Retrieval
	3.9 Summary
	References

	Chapter 4 Discourse and Pragmatic Analysis
	4.1 Important Terms
	4.2 Ethnography of Speaking
	4.3 Implicature
	4.4 Cooperative Principle
	4.5 Schema-Script
	4.6 Conversational Analysis
	4.7 Deciphering Meaning and Coherence of Text Data
	4.7.1 Endophora
	4.7.2 Exophora

	4.8 Discourse Context and Its Types
	4.9 Speech Acts
	4.9.1 Direct Speech Act
	4.9.2 Indirect Speech Act

	4.10 Deixis and Deictic Expressions
	4.11 Positive and Negative Face in Pragmatics
	4.11.1 Positive Face
	4.11.2 Negative Face

	4.12 Pragmatic Markers and Functions
	4.12.1 Functions of Pragmatic Markers

	4.13 Summary
	References

	Chapter 5 Artificial Intelligence in NLP
	5.1 Machine Learning
	5.1.1 Supervised Machine Learning
	5.1.2 Unsupervised Machine Learning

	5.2 Machine Learning on Natural Language Sentences
	5.3 Hybrid Machine Learning Systems in NLP
	5.4 Introduction to Deep Learning in NLP
	5.5 Applications of NLP
	5.5.1 Sentiment Analysis
	5.5.2 Prediction of Next Word

	5.6 Summary
	References

	Index

